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Background
Let X be a real reflexive Banach space and Y be a real normed linear space. Suppose that, 
and C ⊆ Y  is a nonempty, closed and convex pointed cone with int C �= ∅. Let K ⊆ X 
be a non-empty subset and a set-valued function F : K × K → 2Y \{∅}, the following 
generalized weak vector equilibrium problem (GWVEP) is to find x̄ ∈ K  such that

and the dual problem for (GWVEP), is so called (DGWVEP), is to find x̄ ∈ K  such that

Both (GWVEP) and (DGWVEP) have been extensively studied by many authors (see 
Ansari and Flores-Bazán 2006; Ansari et  al. 2001a, b, 2002; Flores-Bazán and Flores-
Bazán 2003; Ansari et al. 2001; Sadeqi and Alizadeh 2011; Zhong et al. 2011). An impor-
tant and interesting topic for (GWVEP) and (DGWVEP) is to study the nonemptiness 
and boundedness of the solution sets. As far as we known, the first paper which dis-
cussed this issues was Flores-Bazán and Flores-Bazán (2003) in the case where F is vec-
tor-valued. They studied the existence of solutions of (GWVEP) under the asymptotic 
analysis, where neither compactness of K nor any coercivity condition is assumed in 

(GWVEP)x̄ ∈ K such that F(x̄, y) ∩ (−int C) = ∅, ∀y ∈ K ,

(DGWVEP)x̄ ∈ K such that F(y, x̄) ∩ (int C) = ∅, ∀y ∈ K .

Abstract 

In this paper, the existence theorems of solutions for generalized weak vector equi-
librium problems are developed in real reflexive Banach spaces. Based on recession 
method and scalarization technique, we derive a characterization of nonemptiness 
and boundedness of solution set for generalized weak vector equilibrium problems. 
Moreover, Painlevé–Kuratowski upper convergence of solution set is also discussed as 
an application, when both the objective mapping and the constraint set are perturbed 
by difference parameters.
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reflexive Banach spaces. By using idea of recession method in Flores-Bazán and Flores-
Bazán (2003), Ansari and Flores-Bazán (2006) gave some necessary and sufficient con-
ditions for nonemptiness and boundedness of the solution set of (GWVEP). In 2011, 
Sadeqi and Alizadeh (2011) discussed and improved some results of Ansari and Flores-
Bazán (2006). They gave the conditions under which the solution set of (GWVEP) is 
non-empty, convex and weakly compact subset in reflexive Banach spaces. After a thor-
ough review of the literature and according to our knowledge, we found that the convex-
ity assumed for second variable of F is an essential assumption (see also Chen et al. 2008; 
Flores-Bazán 2000; Fang and Huang 2007).

On the other hand, the stability analysis of the solution mappings to generalized vec-
tor equilibrium problem is an important topic in vector optimization theory. Recently, 
the lower semicontinuity, (Hölder) continuity of the solution maps to (GWVEP) 
are discussed in Li and Li (2011), Gong (2008), Chen et  al. (2009), Xu and Li (2013). 
Among those papers, we observe that the linear scalarization technique is one effective 
to deal with the lower semicontinuity and (Hölder) continuity of solution mappings to 
(GWVEP). Based on the linear scalarization, the solution sets for (GWVEP) is the union 
of family of the solution set to scalarized equilibrium problems with respect to the linear 
map on dual cone. In natural, the union of family of solution sets to scalarized equilib-
rium problems is finer than the solution set to (GWVEP). In order to obtain the equality, 
convexity in second variable of F is assumed.

Motivated and Inspired by above works, the aim of this paper is to consider a 
(GWVEP) with a set-valued map on unbounded constraint set in reflexive Banach 
spaces. We first collect the characterization results of the nonemptiness and bounded-
ness of the solution set of (GWVEP). By using the linear scalarization technique, we 
characterize the nonemptiness and boundedness of the solution set of (GWVEP) in 
terms of nonemptiness and boundedness of a family of scalar equilibrium problem with 
respect to linear maps in connected base for dual cone of C. Finally, we give the stability 
results for the solution maps to (GWVEP) in the sense of Painlevé–Kuratowski upper 
convergence of solution set.

The paper is organized as follows. In “Preliminaries” section, we introduce some basic 
notations and preliminary results. In “Characterization of nonemptiness and bound-
edness of the solution set” section, by using a scalarization technique, we establish the 
nonemptiness and boundedness of solution set for (GWVEP) in reflexive Banach spaces. 
In “Stability analysis” section, we give an application to the stability of the solution sets 
for (GWVEP).

Preliminaries
Throughout this paper, unless otherwise specified, we always assume that X is a real 
reflexive Banach space, Y is a real normed space with dual space Y ∗ and C ⊆ Y  is a non-
empty, closed, convex and pointed cone with int C �= ∅. Let

be the dual cone of C. Clearly,

C∗ := {ξ ∈ Y ∗ : �ξ , y� ≥ 0, ∀y ∈ C}

y ∈ C ⇔�ξ , y� ≥ 0, ∀ξ ∈ C∗,

y ∈ int C ⇔�ξ , y� > 0, ∀ξ ∈ C∗.
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Since int C �= ∅, for any fixed e ∈ int C, it proved in Huang et al. (2014) that the dual 
cone C∗ of C has a following weak ∗ compact base C∗0.

where a subset D ⊂ C∗ is said to be a base of C∗ ⇔ 0 /∈ D and C∗ ⊂ ∪t≥0tD.
A vector x ∈ K  is called weak efficient solution to the (GWVEP) if

and weak efficient solution to the (DGWVEP) if

Denote by SPW (K , F) and SDW (K , F) the set of all weak efficient solution to the (GWVEP) 
and (DGWVEP), respectively.

Definition 1 (Zhong et al. 2011) Let K be a non-empty convex subset of X. For a given 
closed convex cone C of a real normed space Y , the set-valued map F : K → 2Y \{∅} is 
said to be

(i)  upper C-convex, if for any x, y ∈ Kand for any  t ∈ [0, 1], 

(ii) lower C-convex, if for any x, y ∈ K  and for any t ∈ [0, 1], 

(iii) C-convex, if F is both upper C-convex and lower C-convex.

Remark 1 If F is a upper C-convex map on K, then for any x ∈ K , F(x)+ C is convex 
set.

We first recall the well-known concept of monotone mapping for a real set-valued 
mapping.

Definition 2 A bifunction f : K × K → 2R\{∅} is said to be

(i)  monotone on K, if for any x, y ∈ K

(ii) pseudomonotone on K, if for any x, y ∈ K

It is well-known that every monotone map is pseudomonotone map.
In the case where F is a vector set-valued, the concept of monotonicity can be also 

extended as follows.

Definition 3 Let C ⊆ Y  be a nonempty, closed, convex and pointed cone with 
int C �= ∅. A set-valued map F : K × K → 2Y \{∅} is said to be

C∗0 := {ξ ∈ C∗ : �ξ , e� = 1},

(1)F(x, y) ∩ (−int C) = ∅, ∀y ∈ K ,

(2)F(y, x) ∩ (int C) = ∅, ∀y ∈ K .

tF(x)+ (1− t)F(y) ⊆ F(tx + (1− t)y)+ C;

F(tx + (1− t)y) ⊆ tF(x)+ (1− t)F(y)− C;

z + z′ ≤ 0, ∀z ∈ f (x, y), z′ ∈ f (y, x);

z ≥ 0, ∀z ∈ f (x, y) ⇒ z′ ≤ 0, ∀z′ ∈ f (y, x).
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(i)  C-monotone if, for all x, y ∈ K , 

(ii) C-pseudomonotone type I if, for all x, y ∈ K , 

(iii) C-pseudomonotone type II if, for all x, y ∈ K , 

(iv) ξ-monotone w.r.t. C∗if, for any ξ ∈ C∗ and for any x, y ∈ K , 

(v) ξ-pseudomonotone w.r.t. C∗ if, for any ξ ∈ C∗ and for any x, y ∈ K , 

Remark 2 (1) It is clear that C-monotone mapping is C-pseudomonotone type I and 
type II and C-pseudomonotone type II implies C-pseudomonotone type I.

(2) Every C-monotone mapping is ξ-pseudomonotone w.r.t. C∗.
(3) Every C-pseudomonotone type II mapping is ξ-pseudomonotone w.r.t. C∗, Indeed, 

for any ξ ∈ C∗ and for any x, y ∈ K  satisfying ξ(z) ≥ 0 for all z ∈ F(x, y), we have 
z /∈ −int C and so F(x, y) ∩ (−int C) = ∅. F(y, x) ⊆ −C implies that ξ(z′) ≤ 0 for 
all z′ ∈ F(y, x). But, C-pseudomonotone type I may not implies ξ-pseudomonotone 
w.r.t. C∗.

Example 1 Let X = R,K = [0, 1],Y = R
2,C = R

2
+. Define F : K × K → 2Y \{∅} by

Thus, clearly that F is ξ-pseudomonotone on K w.r.t. C∗ ≡ C. Indeed, for any x, y ∈ K  
and ξ ∈ C∗ if ξ(F(x, y)) ≥ 0, then y− x > 0. This implies that

But C-pseudomonotone type II in the case when x = y.

Example 2 Let X = R,K = [0,+∞),Y = R
2,C = R

2
+ and C∗ ≡ C. Define 

F : K × K → 2Y \{∅} by

Thus, clearly that for any x, y ∈ K , F(x, y) ∩ (−int C) = ∅ implies that 
F(y, x) ∩ (int C) = ∅. Hence, F is pseudomonotne on K type I, but not C-pseudomono-
tone type II.

Moreover, for any ξ ∈ C∗ and x, y ∈ K , we then have

F(x, y)+ F(y, x) ⊆ −C;

F(x, y) ∩ (−int C) = ∅ ⇒ F(y, x) ∩ (int C) = ∅;

F(x, y) ∩ (−int C) = ∅ ⇒ F(y, x) ⊆ −C;

ξ(z)+ ξ(z′) ≤ 0, ∀z ∈ F(x, y), ∀z′ ∈ F(y, x);

ξ(z) ≥ 0, ∀z ∈ F(x, y) ⇒ ξ(z′) ≤ 0, ∀z′ ∈ F(y, x).

F(x, y) =







(x,−x) if x = y,
{(y− x)} × [0, (y− x)] if y− x > 0,

{(y− x)} × [(y− x), 0] if y− x < 0.

F(y, x) = {(x − y)} × [(x − y), 0] ⊆ −R
2
+ ⇒ ξ(z) ≤ 0, ∀z ∈ F(y, x).

F(x, y) = {0} × [0, |y− x|], ∀x, y ∈ K .

ξ
(

F(x, y)
)

= ξ
(

F(y, x)
)

≥ 0.
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Therefore, F is not ξ-pseudomonotone on K w.r.t. C∗ as shown in the following example.

Definition 4 A topological space E is said to be connected iff, it is not the union of 
two disjoint nonempty open sets. Moreover, E is said to be path-connected iff, any two 
points of E can be joined by a path.

The following lemma, which gives an equivalent characterization of connected spaces, 
plays an important role in our proof.

Lemma 1 A topological space E is connected if and only if the only subsets of E which 
are both open and closed are E and ∅.

Definition 5 Let F : K → 2Y  be a set-valued mapping with nonempty values. F is said 
to be

(i)  upper semicontinuous(u.s.c.) on K iff, for every x ∈ K  and every neighborhood 
N(F(x)) of F(x) , there exists a neighborhood N(x) of x such that F(N (x)) ⊆ N (F(x));

(ii) lower semicontinuous(l.s.c.) on K iff, for every x ∈ K ,u ∈ F(x) and every neighbor-
hood N(u) of u, there exists a neighborhood N(x) of x such that F(x′) ∩ N (u) �= ∅ 
for every x′ ∈ N (x).

Proposition 1 (Aubin and Ekeland 1984; Ferro 1989) 

(i) F is l.s.c. at �̄ if and only if for any sequence {�n} ⊂ � with �n → �̄ and any x̄ ∈ F(�̄),  
there exists xn ∈ F(�n) such that xn → x̄.

(ii) F is weakly l.s.c. at �̄ if and only if for any sequence {�n} ⊂ � with �n ⇀ �̄ and any 
x̄ ∈ F(�̄), there exists xn ∈ F(�n) such that xn → x̄.

(iii) If F has compact values (i.e., F(�) is a compact set for each � ∈ �), then F is u.s.c. 
at �̄ if and only if for any sequence {�n} ⊂ � with �n → �̄ and for any xn ∈ F(�n), 
there exists x̄ ∈ F(�̄) and a subsequence {xnk } of {xn} such that xnk → x̄.

We collect the following well-known KKM-Fan lemma.

Lemma 2 (Fan 1984) Let M be a nonempty, closed and convex subset of X and 
F : M → 2M\{∅} be a set-valued map. Suppose that for any finite set {x1, . . . , xm} ⊆ M , 
one has

(i) conv{x1, . . . , xm} ⊂ ∪m
i=1F(xi) (i.e., F is a KKM map on M);

(ii) F(x) is closed for every x ∈ M; and
(iii) F(x) compact for some x ∈ M.

Then ∩x∈MF(x) �= ∅.
Now, we recall the fundamental tools used throughout this paper. This leads to the 

concepts of asymptotic cone and asymptotic function through its epigraph.

K∞ =

{

d ∈ X : ∃tk → +∞, xk ∈ X such that
1

tk
xk ⇀ d

}

,
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where “⇀” or “ω − limn→∞ xn = x” means convergence in the weak topology. In case K 
is convex subset, K∞ can also be determined by the following formula

The barrier cone of K is defined by

Proposition 2 (Ansari and Flores-Bazán 2006, Proposition 2.1) The following holds:

(i) K 1 ⊆ K 2 implies K 1
∞ ⊆ K 2

∞;
(ii) (K + x)∞ = K∞, ∀x ∈ X;
(iii) let {Ki}i∈I be any family of nonempty sets in X , then

If, in addition, ∩i∈IK
i �= ∅ and each set Ki is closed and convex, then we obtain an equal-

ity in (3).

Lemma 3 (Adly et al. 2004) Let K be a nonempty, closed and convex subset of a real 
reflexive Banach space X with int(barr K ) �= ∅. Then there is no sequence {xn} ⊂ K  with 
�xn� → ∞ such that origin is a weak limit of 

xn

‖xn‖
, i.e. 

xn

‖xn‖
⇀ 0.

Lemma 4 (Fan and Zhong 2008) Let K be a nonempty, closed, convex subset of a 
real reflexive Banach space X with int (barr (K )) �= ∅. Then there exists no sequence 
{dn} ⊂ K∞ with each �dn� = 1 such that dn ⇀ 0.

Lemma 5 (Fan and Zhong 2008) Let (M,  d) be a metric space and µ0 ∈ M be a 
given point. Let K : M → 2X be a set-valued mapping with nonempty valued and 
upper semicontinuous at µ0. Then there exists a neighborhood N (µ0) of µ0 such that 
(K (µ)∞) ⊂ (K (µ0))∞ for all µ ∈ N (µ0).

Characterization of nonemptiness and boundedness of the solution set
In this section, we shall prove the characterization of nonemptiness and boundedness of 
the solution set for (GWVEP) which states that under suitable conditions.

First of all, we recall the existing assumptions and results which can be found in Ansari 
and Flores-Bazán (2006), Zhong et al. (2011), Sadeqi and Alizadeh (2011).

Assumption 1 (Zhong et al. 2011; Ansari and Flores-Bazán 2006) The set-valued map 
F : K × K → 2Y \{∅} is such that: 

(F0)  F(x, x) = {0} for all x ∈ K .
(F1)  For any x, y ∈ K , F(x, y) ∩ (−int C) = ∅ ⇒ F(y, x) ⊆ −C (C pseudomonotone 

type II ).

K∞ =
{

d ∈ X : x0 + td ∈ K , ∀t > 0, ∀x0 ∈ K
}

.

barr K =

{

ξ∗ ∈ K ∗ : sup
y∈K

�ξ∗, y� < +∞

}

.

(3)
(

∩i∈IK
i
)

∞
⊂ ∩i∈IK

i
∞.
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(F2)  For any x ∈ K , F(x, ·) : K → 2Y \{∅} is C-convex.
(F3)  For any x, y ∈ K , the set {z ∈ [x, y] : F(z, y) ∩ (−int C) = ∅} is closed, where [x, y] 

denotes the closed line segment joining x and y .
(F4)  For any x ∈ K , F(x, ·) is weakly lower semicontinuous.
(F5)  For any y ∈ K , {x ∈ K : F(y, x) ∩ (int C) = ∅} is convex.

Under Assumption 1, It is proved in Zhong et al. (2011) that, SPW (K , F) is nonempty if 
K is bounded subset of X . In the case where K is unbounded, it is needed to determine 
the behavior of F along some particular directions. We introduce the following cones.

The following lemma illustrates that the solution set SPW (K , F) and SDW (K , F) are coin-
cide no matter what K is bounded or not.

Lemma 6 (Sadeqi and Alizadeh 2011,  Lemma  3.4) Let K be a nonempty, closed and 
convex subset of X and F : K × K → 2Y \{∅} be a set valued map satisfying (F0)− (F3) . 
Then

Theorem 1 (Sadeqi and Alizadeh 2011, Theorem 3.5) Let K be a nonempty, closed and 
convex subset of X and F : K × K → 2Y \{∅} be a set valued map satisfying (F0)− (F5). If 
the set the solution set SPW (K , F) is nonempty, then

The following theorem is due to the result in Zhong et al. (2011), Ansari and Flores-
Bazán (2006), Sadeqi and Alizadeh (2011).

Theorem 2 Let K be a nonempty closed convex subset of X and F : K × K → 2Y \{∅} be 
a set valued mapping satisfying assumptions (F0)− (F5). Suppose that int(barr(K )) �= ∅. 
Then the following statements are equivalent.

(i) the solution set of SPW (K , F) is nonempty and bounded;
(ii) the solution set of SDW (K , F) is nonempty and bounded;
(iii) R1 = {0};
(iv) there exists a bounded set B ⊂ K  such that for every x ∈ K\B, there exists some 

y ∈ B such that F(y, x) ∩ (int C) �= ∅.

Proof (i) ⇔ (ii) and (ii) ⇒ (iii) are obtained by Theorems 1 and 2, respectively.
(iii) ⇒ (iv) Suppose not, if (iv) does not hold, then there exists a sequence {xn} ⊆ K  

such that for each n, ‖xn‖ > n and

for every y ∈ K  with �y� ≤ n. For fixed y ∈ K  and t > 0, without loss of generality, we 
may take a subsequence {xnk } of {xn} such that

(4)R1 := {d ∈ K∞ : F(y, y+ td) ∩ (int C) = ∅, ∀y ∈ K , t > 0}.

SPW (K , F) = SDW (K , F).

(SPW (K , F))∞ = (SDW (K , F))∞ = R1.

F(y, xn) ∩ (int C) = ∅,
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Thanks to Lemma 3, one has d0 �= 0. The lower C-convexity of F(x, ·) implies

It follows from F(y, y) = {0} and F(y, xnk ) ∩ (int C) = ∅ that

Since y+
t(xnk − y)

�xnk − y�
⇀ y+ td0 and F is weakly lower semicontinuous at second argu-

ment, we have that F(y, y+ td0) ∩ (int C) = ∅, and so d0 ∈ R1. This is a contradiction. 
Hence (iv) holds.

(iv) ⇒ (ii) Let G : K → 2K  be a set-valued mapping defined by

We first prove that G(y) is a closed subset of K . Indeed, for any xn ∈ G(y) with xn → x0 , 
we have F(y, xn) ∩ (int C) = ∅. It follows from the weakly lower semicontinuity of F(x, ·) 
that F(y, x0) ∩ (int C) = ∅. This shows that x0 ∈ G(y) and so G(y) is closed.

Next, we will show that G is a KKM mapping. Suppose to the contrary that there 
exist α1,α2, . . . ,αn ∈ (0, 1) with α1 + α2 + · · · + αn = 1, y1, y2, . . . , yn ∈ K  and 
ȳ = α1y1 + α2y2 + · · · + αnyn ∈ co{y1, y2, . . . , yn} such that ȳ /∈ ∪i∈{1,2,...,n}G(yi). Then

Using (F1) yields

The upper C-convexity of F implies

This is a contradiction with (7). Therefore, G is KKM mapping.
We may assume that B is a bounded closed convex set (otherwise, consider the 

closed convex hull of B instead of B ). Let {y1, . . . , ym} be finite number of points in K 
and let M := co(B ∪ {y1, y2, . . . , ym}). Then the reflexivity of the space X yields that M 
is weakly compact convex. We consider the set-valued mapping G′ which defined by 
G′(y) := G(y) ∩M for all y ∈ M. Then each G′(y) is a weakly compact convex subset of 
M and G′ is a KKM mapping. We claim that

By Lemma 2, the intersection in (8) is nonempty. Moreover, if there exists some 
x0 ∈ ∩y∈MG′(y) but x0 /∈ B, then by (iv), we have F(y, x0) ∩ (int C) �= ∅ for some y ∈ B. 
Thus, x0 /∈ G(y) and so x0 /∈ G′(y), which is a contradiction to the choice of x0.

(5)

t

�xnk − y�
∈ (0, 1) and ω − lim

k→+∞

xnk − y

�xnk − y�
= ω − lim

k→+∞

xnk
�xnk�

= d0 ∈ K∞.

F

(

y, y+
t(xnk − y)

�xnk − y�

)

⊆

(

1−
t

�xnk − y�

)

F(y, y)+
t

�xnk − y�
F(y, xnk )− C .

F

(

y, y+
t(xnk − y)

�xnk − y�

)

∩ (int C) = ∅.

(6)G(y) := {x ∈ K : F(y, x) ∩ (int C) = ∅}, ∀y ∈ K .

F(yi, ȳ) ∩ (int C) �= ∅, i = 1, 2, . . . , n.

(7)F(ȳ, yi) ∩ (−int C) �= ∅, i = 1, 2, . . . , n.

α1F(ȳ, y1)+ α2F(ȳ, y2)+ · · · + αnF(ȳ, yn) ⊆ F(ȳ, ȳ)+ C = 0+ C ⊆ C .

(8)∅ �= ∩y∈MG′(y) ⊂ B.
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Let z ∈ ∩y∈MG(y). Then, by (8) we get z ∈ B, and so z ∈ ∩m
i=1(G(yi) ∩ B). This shows 

that the collection {G(y) ∩ B : y ∈ K } has finite intersection property. For each y ∈ K , it 
follows from the weak compactness of G(y) ∩ B that ∩y∈K (G(y) ∩ B) is nonempty, which 
coincides with the solution set of SDW (F ,K ). The proof is complete.  �

The following example show that Theorem 2 is applicable.

Example 3 Let X = R,K = [0,+∞),Y = R
2,C = R

2
+, e = (1, 1) ∈ int C. A set-valued 

map F : K × K → 2R
2
\{∅} is defined by

We have that K∞ = [0,+∞) and C∗0 :=
{

(x1, x2) ∈ R
2, x1 + x2 = 1, x1 ≥ 0 and x2 ≥ 0

}

 . 
It is easily seen that F is satisfied conditions (F0)-(F4). To verify (F5) holds, we fixed 
ȳ ∈ [0,+∞) and consider the following set,

Obviously,

Hence, Theorem 2 concludes that SPW (F ,K ) is nonempty and bounded. It follows from 
direct calculating that SPW (F ,K ) = {0}.

In what follow, we shall discuss the relationship between the nonemptiness and 
boundedness of the solution set for (GWVEP) and the solution set for (GWVEP) which 
F is composed by ξ ∈ C∗. We recall the concept of ξ-efficient solution set for (GWVEP) 
as follows.

For any fixed ξ ∈ C∗0, the real set-valued map ξ(F) : K × K → 2R\{∅} is defined by

A vector x ∈ K  is called ξ-weak efficient solution to the (GWVEP) if

and ξ-weak efficient solution to the (DGWVEP) if

Denote by SPξ (K , F) and SDξ (K , F) the set of all ξ-weak efficient solution to the (GWVEP) 
and (DGWVEP), respectively.

The following lemma characterizes relation between SPW (K , F) and SPξ (K , F).

Lemma 7 Suppose that int C �= ∅ and for any x ∈ K , F(x,K )+ C is a convex set. Then,

F(x, y) = {y− x} × [(y− x), (1+ x)(y− x)], ∀x, y ∈ K .

{x ∈ K : F(ȳ, x) ∩ int C = ∅} = {x ∈ [0,+∞) : x − ȳ ≤ 0 or (1+ y)(x − ȳ) ≤ 0}

= {x ∈ [0,+∞) : x ≤ ȳ} = [0, ȳ] is convex set.

R1 = {d ∈ K∞ : F(y, y+ td) ∩ (int C) = ∅, ∀y ∈ K , t > 0}

= {d ∈ [0,+∞) : td ≤ 0, ∀t > 0 and ∀y ∈ [0,+∞)} = {0}.

(9)ξ(F)(x, y) := {ξ(z) : z ∈ F(x, y)}, ∀x, y ∈ K .

inf
z∈F(x,y)

ξ(z) ≥ 0, ∀y ∈ K ,

sup
z∈F(y,x)

ξ(z) ≤ 0, ∀y ∈ K .

SPW (K , F) = ∪ξ∈C∗\{0}S
P
ξ (K , F) = ∪ξ∈C∗0SPξ (K , F).
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Proof (⊇) Let x0 ∈ ∪ξ∈C∗0SPξ (K , F). Then there exists ξ0 ∈ C∗0 such that

We claim that x0 ∈ SPW (K , F). If not, then there exists y0 ∈ K  such that

This is a contradiction with (10). Hence, we have desired.
(⊆) Let x0 ∈ SPW (K , F). Then,

This implies that

Since C is a pointed convex cone, we have

Using the separation theorem for convex sets, there exists some ξ ′ ∈ Y ∗\{0} such that

From (11), we get ξ ′ ∈ C∗\{0} and so

By our hypothesis, we have C∗0 is a weakly compact base for C∗ and we can choose 
e ∈ int C with ξ ′(e) > 0. Setting ξ ′′ =

ξ ′

ξ ′(e)
, we then have that ξ ′′ ∈ C∗0 and

Hence, x0 ∈ SPξ ′′(K , F) ⊆ ∪ξ∈C∗0SPξ (K , F). This completes the proof.  �

The following corollary give the sufficient conditions for nonemptiness and bounded-
ness of solution set for (GWVEP) in the case of real set-valued mappings.

It follows from Theorem  2, we can derive the following corollary in the case where 
F : K × K → 2R\{∅}.

Corollary 1 Let K be a nonempty closed convex subset of X and F : K × K → 2R\{∅} be 
a set-valued mapping satisfying assumptions (F0)− (F4). Suppose that int(barr(K )) �= ∅. 
Then the following statements are equivalent.

(i) the solution set of SPW (K , F) is nonempty and bounded;
(ii) the solution set of SDW (K , F) is nonempty and bounded;
(iii) R = {d ∈ K∞ : supz∈F(y,y+td) z ≤ 0, ∀y ∈ K , t > 0} = {0};
(iv) there exists a bounded set B ⊂ K  such that for every x ∈ K\B, there exists y ∈ B 

such that z > 0 for some z ∈ F(y, x).

Proof We see that F satisfies the assumption (F0)-(F4) in Theorem 2. It is easy to verify, 
by (F2), that (F5) is satisfied.  �

(10)ξ0(z) ≥ 0 for all y ∈ K for all z ∈ F(x0, y).

ξ0(z0) < 0 for some z0 ∈ F(x0, y0).

F(x0, y) ∩ (−int C) = ∅ for all y ∈ K .

F(x0,K ) ∩ (−int C) = ∅.

(F(x0,K )+ C) ∩ (−int C) = ∅.

(11)inf{ξ ′
(

F(x0, y)+ c : y ∈ K , c ∈ C
)

} ≥ sup{ξ ′(−c) : c ∈ C}.

ξ ′(z) ≥ 0 for all z ∈ F(x0, y) for all y ∈ K .

ξ ′′(z) ≥ 0 for all z ∈ F(x0, y) for all y ∈ K .
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By virtue of Lemma 7, one sees that the solution set for (GWVEP) can be represented 
by union of real set-valued ξ(F) mappings. This means that the nonemptiness of SPξ (K , F) 
guarantees the existence of solution for (GWVEP). We next establish the existence theo-
rem for ξ-weak efficient solution to the (GWVEP).

By the idea of linear scalarization technique, for any ξ ∈ C∗0, we first introduce the set

The following lemma shows that the condition of ∪ξ∈C∗0R
ξ
1 = {0} is weaker than 

R1 = {0} .

Lemma 8 R1 = {0} ⇒ ∪ξ∈C∗0R
ξ
1 = {0}.

Proof Assume that R1 = {0}. Let d0 ∈ ∪ξ∈C∗0Rξ. Then there exists ξ0 ∈ C∗0 and 
d0 ∈ K∞ such that for every y ∈ K  and t > 0

We claim that for any z ∈ F(y, y+ td0), z /∈ int C. If not, there exists z0 ∈ F(y, y+ td0) 
such that z ∈ int C and so

which leads to contradiction with (12). Hence, for every y ∈ K  and t > 0

By our hypothesis, d0 = 0.

The following example shows that the inverse implication of Lemma 8 may not be true.
The following example has been changed format.

Example 4 Let X = R,K = [0,+∞),Y = R
2,C = R

2
+, e = (1, 1) ∈ int C. Define 

F : K × K → 2Y \{∅} by

Then K∞ = [0,+∞) and C∗0 = {(x1, x2) ∈ R
2
+ : x1 + x2 = 1}.

We see that for any y ∈ R+, d ∈ R and t > 0,

which implies that F(y, y+ td) ∩ int C = ∅ for all y ∈ R+, d ∈ R and t > 0. Hence, 
R1 = [0,+∞). But, for any ξ ∈ C∗0, we have for any y, d ∈ R+ and t > 0

R
ξ
1 :=

{

d ∈ K∞ : sup
z∈F(y,y+td)

ξ(z) ≤ 0, ∀y ∈ K , t > 0

}

.

(12)ξ0(z) ≤ 0 for all z ∈ F(y, y+ td0).

(13)ξ0(z0) > 0,

F(y, y+ td0) ∩ (int C) = ∅.

F(x, y) =

{

{0} × [0, 1− |y− x|], if 0 ≤ |y− x| ≤ 1,
[|y− x| − 1, 0] × {0}, if |y− x| > 1.

F(y, y+ td) ⊆

{

{0} × [0, 1], if 0 ≤ |td| ≤ 1,
[0,+∞)× {0}, if |td| > 1,

ξ(z) ≥ 0, for all x ∈ F(y, y+ td),
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which implies that d must be 0 , and so Rξ
1 = {0} for all ξ ∈ C∗0.

From the Corollary 1, we can obtain the following characterization corollary for ξ-effi-
cient solution SPξ (K , F) and SDξ (K , F).

Corollary 2 Let ξ ∈ C∗0 be any given. Let K be a nonempty closed convex subset of X 
and F : K × K → 2Y \{∅} be a set-valued mapping satisfying assumptions (F0), (F2)–(F4) 
and (v) in Definition 3. Suppose that int(barr(K )) �= ∅. Then the following statements are 
equivalent:

(i) the solution set of SPξ (K , F) is nonempty and bounded;
(ii) the solution set of SDξ (K , F) is nonempty and bounded;
(iii) Rξ

1 = {0};
(iv) there exists a bounded set B ⊂ K  such that for every x ∈ K\B, there exists y ∈ B 

such that ξ(z) > 0 for some z ∈ F(y, x).

Proof For any fixed ξ ∈ C∗\{0}, we define ξ(F) : K × K → 2R\{∅} as in (9). It is not 
hard to check that ξ(F) satisfies conditions (F0)–(F4) in Corollary 1.  �

We now characterize the nonemptiness and boundedness of SPW (K , F) in term of non-
emptiness and boundedness of the solution set SPξ (K , F) for any ξ ∈ C∗0.

Theorem 3 Let X be a reflexive Banach space and K be a closed convex subset of X with 
int(barrK ) �= ∅. Let Y be a normed space and C∗0 is a compact base of C∗. Suppose that 
F : K × K → 2Y \{∅} is a set-valued mapping satisfying assumptions (F0), (F2)−(F4) 
and (v) in Definition 3.

Then SPW (K , F) is nonempty and bounded if and only if for any ξ ∈ C∗0, SPξ (K , F) is non-
empty and bounded.

Proof Suppose that for any ξ ∈ C∗0, SPξ (K , F) is nonempty and bounded. Then by Cor-
ollary 2, Rξ

1 = {0}. We claim that SPW (K , F) is nonempty and bounded. The nonempti-
ness of SPW (K , F) is obvious, because of SPξ (K , F) ⊂ SPW (K , F). We only need to show 
that SPW (K , F) is bounded. If not, there exists a sequence xn ∈ SPW (K , F) such that 
�xn� → +∞. Since xn ∈ SPW (K , F), we then have

Thus, for every zn ∈ F(xn, y), zn /∈ −int C. Then there exists ξn ∈ C∗0 such that

By the ξ-pseudomonotonicity of F , we have

Since C∗0 is compact, without loss of generality, we can assume that ξn → ξ0 ∈ C∗0. For 
any fixed y ∈ K  and t > 0, without loss of generality, we may take a subsequence {xnk } of 
{xn} such that

F(xn, y) ∩ (−int C) = ∅, for all y ∈ K .

ξn(zn) ≥ 0, for all z ∈ F(xn, y), for all y ∈ K .

(14)ξn(z
′
n) ≤ 0, for all z′ ∈ F(y, xn), for all y ∈ K
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By Lemma 3, d0 �= 0. Upper C-convexity of F implies

It follows from F(y, y) = {0} and (14) that for any ξn,

Since F is weakly lower semicontinuous at second variable and ξn → ξ0, we have

This implies that 0 �= d0 ∈ R
ξ
1, which is a contradiction.

Conversely, we assume that SPW (K , F) is nonempty and bounded. We claim that 
SPξ (K , F) is nonempty and bounded for all ξ ∈ C∗0. We consider the set A ⊆ C∗0 as 
follows.

Clearly, A is nonempty. Firstly, we claim that A is open subset in C∗0. If not, there 
exists ξ0 ∈ A and a sequence ξn ∈ C∗0 with ξn → ξ0 such that ξn /∈ A. This implies that 
R
ξn
1 �= {0} . Then there exists dn ∈ R

ξn
1  such that �dn� = 1. Since C∗0 is compact and 

�dn� = 1, without loss of generality, we may assume that dn ⇀ d0 ∈ K∞\{0}. Since 
dn ∈ R

ξn
1 , we have

Since F is weakly lower semicontinuous at second variable and ξn → ξ0, we have

Thus 0 �= d0 ∈ Rξ0. This implies that SPξ0(K , F) is not nonempty and bounded, which leads 
to a contradiction with ξ0 ∈ A. Hence A is an open subset of C∗0.

Finally, we claim that A is a closed subset of C∗0. Let ξn ∈ A with ξn → ξ0. In view 
of ξn ∈ A, we have Sξn(K , F) is nonempty and bounded. Let xn ∈ SPξn(K , F). Whereas 
SPξn(K , F) ⊂ SPW (K , F) and SPW (K , F) is bounded, {xn} is also. We may assume that 
xn ⇀ x0 ∈ K . Since xn ∈ Sξn(K , F), then we have

By ξ-pseudomonotonicity of F , we get

Since F is weakly lower semicontinuous at the second variable, letting n → ∞

t

�xnk − y�
∈ (0, 1) and w − lim

k→+∞

xnk − y

�xnk − y�
= w − lim

k→+∞

xnk
�xnk�

= d0 ∈ K∞.

(

1−
1

�xnk − y�

)

F(y, y)+
t

�xnk − y�
F(y, xnk ) ⊆ F

(

y, y+
t(xnk − y)

�xnk − y�

)

+ C

ξn

(

F

(

y, y+
t(xnk − y)

�xnk − y�

))

≤

(

1−
1

�xnk − y�

)

ξn
(

F(y, y)
)

+
t

�xnk − y�
ξn
(

F(t, xnk )
)

≤ 0.

ξ0(F(y, y+ td0)) ≤ 0.

A := {ξ ∈ C∗0 : SPξ (K , F) is nonempty and bounded }.

ξn(z
′) ≤ 0 for all z′ ∈ F(y, y+ tdn) for all y ∈ K .

ξ0(z
′) ≤ 0 for all z′ ∈ F(y, y+ td0) for all y ∈ K .

ξn(z) ≥ 0 for all z ∈ F(xn, y) for all y ∈ K .

ξn(z
′) ≤ 0, for all z′ ∈ F(y, xn), for all y ∈ K .

ξ0(z
′) ≤ 0, for all z′ ∈ F(y, x0), for all y ∈ K .
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Hence, x0 ∈ SDξ0(K , F). Thanks to Corollary 2, we get that x0 ∈ SPξ0(K , F). The bounded-
ness of SPW (K , F) implies SPξ0(K , F) is also. This means that ξ0 ∈ A and so A is closed. 
Since the base C∗0 of C∗ is connected, we have A must be C∗0.  �

Theorem 4 Let X be a reflexive Banach space and K be a closed convex subset of X with 
int(barrK ) �= ∅. Let Y be a normed space and C∗0 is a compact base of C∗. Suppose that 
F : K × K → 2Y \{∅} is a set-valued mapping satisfying assumptions (F0), (F2)–(F4) and 
(v) in Definition 3. Then the following statements are equivalent.

(i) SPW (K , F) is nonempty and bounded;
(ii) For every ξ ∈ C∗0, SPξ (K , F) is nonempty and bounded;
(iii) ∪ξ∈C∗0R

ξ
1 = {0}.

Remark 3 Theorem 4 generalize Theorem 2, in the following three cases:

(i) Condition (F1) is relaxed to the condition (F ξ
1 ).

(ii) Recession cone R1 = {0} is relaxed to the condition ∪ξ∈C∗0R
ξ
1 = {0}.

(iii) Condition (F5) is omitted.
The following example show that Theorem 4 is applicable.

Example 5 Let X = R,K = [0,+∞),Y = R
2,C = R

2
+, e = (1, 1) ∈ int C. A set-valued 

map F : K × K → 2R
2
\{∅} is defined by

Then, clearly (F0), (F2)− (F4) and (v) in Definition 3 are satisfied. For any ξ ∈ C∗0, we 
consider

It follows from Theorem 4 that, SPW (K , F) is nonempty and bounded.

Stability analysis
In this section, we shall establish the stability theorem of solution set for (GWVEP) 
when the mapping F and the domain set K are perturbed by different parameters.

We first recall some important notions . Let (�, d�) and (M, dM) be two metric spaces. 
Let K (�) be perturbed by a parameter �, which varies over (�, d�), that is, K : � → 2X is 
a set-valued mapping with nonempty, closed, and convex values. Let F be perturbed by a 
parameter µ, which varies over (M, dM), that is, F : K × K ×M → 2Y \{∅} is a paramet-
ric set-valued mapping.

Consider the parametric generalized weak vector equilibrium problems, denoted by 
(PGWVEP), which consists in finding x̄ ∈ K (�) such that

F(x, y) = {(y− x)} × [(y− x), (e(y−x) − 1)+ (y− x)]

R
ξ
1 =

{

d ∈ K∞ : sup
z∈(F(y,y+td))

ξ(z) ≤ 0, ∀y ∈ K , t > 0

}

=
{

d ∈ [0,+∞) : ξ(z) ≤ 0,∀z ∈ {td} × [td, (etd − 1)+ td] and ∀y ∈ K , t > 0
}

= {0}.

(PGWVEP)F(x̄, y,µ) ∩ (−int C) �= ∅ ∀y ∈ K (�).
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Denote by SPW (�,µ) the set of all weak efficient solution to the (PGWVEP).
Let {An} be a sequence of nonempty subset of X . We define

We say that the sequence {An} is of upper convergence in the sense of Painlev́e–Kura-
towski (P.K. convergence) Durea (2007) to A if lim supn→+∞ An ⊆ A.

The following theorem shows that under suitable situation, there exists a neighbor-
hood N (�0)× N (µ0) of (�0,µ0) such that SPW (�,µ) P.K. convergence to SPW (�0,µ0) in the 
neighborhood N (�0)× N (µ0).

Theorem 5 Let X be a real reflexive Banach space and K be a closed convex subset of X 
with int(barrK ) �= ∅. Let Y be a normed space and C∗0 is a compact base of C∗. Suppose 
that F satisfies the following conditions:

(I) K (·) is continuous on � and int( barr K (�0)) �= ∅, for all � ∈ � and has non-
empty closed convex valued.

(II) For any � ∈ � and x ∈ K (�), F(x, x,µ) = {0}.
(III) For any � ∈ � and µ ∈ M, F(·, ·,µ) is ξ-pseudomonotone on K (�) w.r.t. C∗0.
(IV) For any µ ∈ M and x ∈ K (µ), F(x, ·,µ) is C-convex.
(V) For any � ∈ � and µ ∈ M, F(·, ·, ·) is continuous on K (�)× K (�)×M.

If SPW (�0,µ0) is nonempty and bounded, then the following statements hold.

(i) there exists a neighborhood N (�0)× N (µ0) such that SPW (�,µ) has a nonempty 
and bounded for all (�,µ) ∈ N (�0)× N (µ0).

(ii) lim sup(�,µ)→(�0,µ0)
SPW (�,µ) ⊆ SPW (�0,µ0).

Proof (i) We claim that there exists a neighborhood N (�0)× N (µ0) of (�0,µ0) such 
that for any (�,µ) ∈ N (�0)× N (µ0) and ξ ∈ C∗0

If not, there exists (�n,µn) ∈ �×M with (�n,µn) → (�0,µ0) and ξ ′ ∈ C∗0 such that 
R
ξ ′

1 (�n,µn) �= {0}.
Since K is lower semicontinuous at �0, for any y ∈ K (�0), we have yn ∈ K (�n) such 

that yn → y. Together with µn → µ0, we have (yn,µn) → (y,µ0). Thus, we can select a 
sequence {dn} such that

with �dn� = 1 for all n = 1, 2, . . .. Since {dn} is a bounded sequence in a reflexive Banach 
space X we can assume that dn ⇀ d0. It follows from Lemma 4 that d0 �= 0. We claim 
that d0 ∈ K (�0)∞. Since K is upper semicontinuous at �0 and dn ∈ K (�n)∞, by Lemma 5, 

lim sup
n→+∞

An :=
{

x ∈ X : ∃{nk}, xnk ∈ Ank such that xnk → x
}

.

R
ξ
1(�,µ) :=

{

d ∈ K (�)∞ : sup
z∈(F(y,y+td,µ))

ξ(z) ≤ 0, ∀y ∈ K , t > 0

}

= {0}.

(15)dn ∈ K (�n)∞ and sup
z∈F(yn,yn+tdn,µn)

ξ ′(z) ≤ 0, ∀y ∈ K (�n), t > 0.



Page 16 of 17Preechasilp and Wangkeeree  SpringerPlus  (2016) 5:1345 

we have that dn ∈ K (�0)∞, for all sufficiently large n . By the closure of K (�0)∞, we have 
d0 ∈ K (�0)∞. Notice that the continuity assumption of F , taking the limit in (15), we 
have

which implies that 0 �= d0 ∈ R
ξ ′

1 (�0,µ0). This is a contradiction with SPW (�0,µ0) �= ∅, so 
we have the claim.

(ii) We want to show that for any (�,µ) → (�0,µ0),

Let x̄ ∈ lim sup(�,µ)→(�0,µ0)
SPW (�,µ). Then there exits a sequence xnk ∈ SPW (�nk ,µnk ) 

such that xnk → x̄ as k → ∞. Since K is upper semicontinuous at �0, for sufficiently large 
n we get that

where B is a closed unit ball. By virtue of xnk ∈ K (�nk ), we get that

It follows from K (�0) is closed and xnk → x̄ that x̄ ∈ K (�0).
Since K is lower semicontinuous at �0, for any y ∈ K (�0) there exists ynk ∈ K (�nk ) with 

ynk → y. By our hypothesis, we get

Continuity of F implies

Since the latest inequality holds for all y ∈ K (�0). Hence, x̄ ∈ SPW (�0,µ0).  �

Conclusions
In this paper, some characterizations of nonemptiness and boundedness of solution sets 
for generalized weak vector equilibrium problems are established in a reflexive Banach 
space. By using the linear scalarization method, we give a sufficient and necessary condi-
tion for the nonemptiness and boundedness of SPW (K , F) in term of nonemptiness and 
boundedness of the solution set SPξ (K , F) for any ξ ∈ C∗0. As application, we discuss the 
stability result for the solution set to (PGWVEP) in the sense of Painlevé–Kuratowski 
upper convergence of set.
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sup
z∈F(y,y+td0,µ0)

ξ ′(z) ≤ 0,

lim sup
(�,µ)→(�0,µ0)

SPW (�,µ) ⊆ SPW (�0,µ0).

K (�n) ⊆ K (�0)+
1

n
B,

d(xnk ,K (�0)) ≤
1

nk
→ 0.

F(xnk , ynk ,µnk ) ∩ (−int C) = ∅.

F(x̄, y,µ0) ∩ (−int C) = ∅.
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