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Background
The origins of the notion of frames can be traced back to the literature Duffin and 
Schaeffer (1952) in the early 1950’s, when they were used to deal with some problems 
in nonharmonic Fourier series. People did not realize the importance of frames until 
the publication of the fundamental paper Daubechies et  al. (1986) on wavelet theory 
due to Daubechies, Grossmann and Meyer. Today, owing to the flexibility, frames have 
been used in dozens of areas by applied mathematicians and engineers (see Benedetto 
et al. 2006; Candès and Donoho 2005; Sun (2010). Sun (2006) proposed the concept of 
g-frames which extends the concept of frames from bounded linear functionals to oper-
ators and covers many recent generalizations of frames.

On the other hand, the concepts of frames and g-frames for Hilbert spaces have been 
generalized to the case of Hilbert C∗-modules (Frank and Larson 2002; Khosravi and 
Khosravi 2008). It should be pointed out, due to the complex structure of C∗-algebras 
embedded in the Hilbert C∗-modules, that the problems about frames and g-frames 
in Hilbert C∗-modules are more complicated than those in Hilbert spaces. Frames and 
especial g-frames for Hilbert C∗-modules have been studied intensively, for more details 
see Alijani (2015), Alijani and Dehghan (2012), Askarizadeh and Dehghan (2013), Han 
et al. (2013), Rashidi-Kouchi et al. (2014), Xiang and Li (2016), Xiang (2016), Xiao and 
Zeng (2010).

We need to collect some notations and basic definitions.
Throughout this paper, the symbols J and A are reserved for a finite or countable 

index set and a unital C∗-algebra, respectively. H, K and Kj’s are Hilbert C∗-modules 
over A, and put �f , f � = |f |2 for every f ∈ H. We use End∗A(H,K) to denote the set of 
all adjointable operators from H to K, and End∗A(H,H) is abbreviated to End∗A(H).
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A family {�j ∈ End
∗
A(H,Kj)}j∈J is said to be a g-frame for H with respect to {Kj}j∈J, 

if there are two positive constants 0 < C ≤ D < ∞ such that

The numbers C and D are called g-frame bounds. We call {�j}j∈J a �-tight g-frame if 
C = D = �, and a Parseval g-frame if C = D = 1. The sequence {�j}j∈J is called a g-Bes-
sel sequence with bound D if only the right hand inequality of (1) is satisfied.

Let {�j ∈ End
∗
A(H,Kj)}j∈J be a g-frame for H with respect to {Kj}j∈J, then the 

g-frame operator S for {�j}j∈J is defined by

It is easily seen that S is positive, self-adjoint and invertible. Denote �̃j = �jS
−1 for each 

j ∈ J, then a simple calculation shows that {�̃j}j∈J remains a g-frame for H with respect 
to {Kj}j∈J, which we call the canonical dual g-frame of {�j}j∈J. For any K ⊂ J, we let 
Kc = J\K, and define the adjointable operators

Balan et  al. (2007) discovered a remarkable inequality for Parseval frames in Hilbert 
spaces when working on efficient algorithms for signal reconstruction. Later on, Găvruţa 
(2006) extended it to general frames. The results of Găvruţa (2006) were applied recently 
in quantum information theory, see Jivulescu and Găvruţa (2015). Moreover, Poria Poria 
(2016) generalized those inequalities to the case of Hilbert–Schmidt frames, which pos-
sess a more general form. On the other hand, the authors of Xiao and Zeng (2010) have 
already extended the inequalities for Parseval frames and general frames to g-frames in 
Hilbert C∗-modules:

Theorem  1 Let {�j ∈ End
∗
A(H,Kj)}j∈J be a g-frame for H with respect to {Kj}j∈J, 

and {�̃j}j∈J be the canonical dual g-frame of {�j}j∈J, then for any K ⊂ J and any f ∈ H , 
we have

Theorem  2 Let {�j ∈ End
∗
A(H,Kj)}j∈J be a Parseval g-frame for H with respect to 

{Kj}j∈J, then for any K ⊂ J and any f ∈ H, we have

Recently, the author of Xiang (2016) obtained several new inequalities for g-frames in 
Hilbert C∗-modules which are different in structure from (4) and (5):

(1)C�f , f � ≤
∑

j∈J

��j f ,�j f � ≤ D�f , f �, ∀ f ∈ H.

(2)S : H → H, Sf =
∑

j∈J

�∗
j �j f , ∀ f ∈ H.

(3)SK, SKc : H → H, SKf =
∑

j∈K

�∗
j �j f , SKc f =

∑

j∈Kc

�∗
j �j f , ∀ f ∈ H.

(4)
∑

j∈J

|�̃jSKf |
2 +

∑

j∈Kc

|�j f |
2 =

∑

j∈J

|�̃jSKc f |2 +
∑

j∈K

|�j f |
2 ≥

3

4

∑

j∈J

|�j f |
2
.

(5)
∣∣∣∣
∑

j∈K

�∗
j �j f

∣∣∣∣
2

+
∑

j∈Kc

|�j f |
2 =

∣∣∣∣
∑

j∈Kc

�∗
j �j f

∣∣∣∣
2

+
∑

j∈K

|�j f |
2 ≥

3

4
�f , f �.
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Theorem  3 Let {�j ∈ End
∗
A(H,Kj)}j∈J be a g-frame for H with respect to {Kj}j∈J 

with canonical dual g-frame {�̃j}j∈J. Then for any K ⊂ J and any f ∈ H, we have

Theorem  4 Let {�j ∈ End
∗
A(H,Kj)}j∈J be a Parseval g-frame for H with respect to 

{Kj}j∈J. Then for any K ⊂ J and any f ∈ H, we have

Inspired by the idea of Poria (2016), in this paper we present two types of double ine-
qualities for g-frames in Hilbert C∗-modules where the scalars � ∈ [0, 1] and � ∈ [ 1

2
, 1] 

are involved respectively, and we show that inequalities (4–9) can be obtained for a spe-
cial value of � = 1

2
.

The main results and their proofs
To derive our main results, we need the following simple result for operators. It should 
be remarked that the fist part of this result is a generalization of Proposition 3.4 in Poria 
(2016). Although the proof is based on modification of the proof in Poria (2016), we 
include the proof for the sake of completeness.

Lemma 5 If U ,V ∈ End
∗
A(H) are self-adjoint operators satisfying U + V = IdH, then 

for any � ∈ [0, 1] and any f ∈ H we have

  Moreover, if U  and V are positive, then for any� ∈ [ 1
2
, 1] and any f ∈ H we have

Proof For any � ∈ [0, 1] and any f ∈ H, we have

(6)0 ≤
∑

j∈K

|�j f |
2 −

∑

j∈J

|�̃jSKf |
2 ≤

1

4

∑

j∈J

|�j f |
2
.

(7)
1

2

∑

j∈J

|�j f |
2 ≤

∑

j∈J

|�̃jSKf |
2 +

∑

j∈J

|�̃jSKc f |2 ≤
∑

j∈J

|�j f |
2
.

(8)0 ≤
∑

j∈K

|�j f |
2 −

∣∣∣∣
∑

j∈K

�∗
j �j f

∣∣∣∣
2

≤
1

4
�f , f �.

(9)1

2
�f , f � ≤

∣∣∣∣
∑

j∈K

�∗
j �j f

∣∣∣∣
2

+

∣∣∣∣
∑

j∈Kc

�∗
j �j f

∣∣∣∣
2

≤ �f , f �.

(10)

�Uf ,Uf � + 2��Vf , f � = �Vf ,Vf � + 2(1− �)�Uf , f �

+ (2�− 1)�f , f �

≥ (2�− �
2)�f , f �.

(11)�Uf ,Uf � ≤ 2��Uf , f �, �Vf ,Vf � ≤ 2��Vf , f �.

(12)

�Uf ,Uf � + 2��Vf , f �

= �U2f , f � + 2��(IdH − U)f , f �

= �(U2 − 2�U + 2�IdH)f , f �

= �(IdH −U)2f , f � + 2(1− �)�Uf , f � + (2�− 1)�f , f �

= �Vf ,Vf � + 2(1− �)�Uf , f � + (2�− 1)�f , f �.
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We also have

This along with (12) leads to (10). We next prove that (11) holds. Since U and V are posi-
tive operators and UV = VU , we obtain

Then, for any � ∈ [ 1
2
, 1] and any f ∈ H we get

it follows that

The second inequality in (11) can be proved similarly.

Theorem  6 Let {�j ∈ End
∗
A(H,Kj)}j∈J be a g-frame for H with respect to {Kj}j∈J, 

and {�̃j} be the canonical dual g-frame of {�j}j∈J, then for any � ∈ [0, 1], for all K ⊂ J and 
all f ∈ H, we have

Proof Denote by S the g-frame operator of {�j}j∈J, then SK + SKc = S and, 
S−

1
2 SKS

− 1
2 + S−

1
2 SKc S−

1
2 = IdH as a consequence. Taking S−

1
2 SKS

− 1
2, S−

1
2 SKc S−

1
2 and 

S
1
2 f  instead of U, V and f respectively in Lemma 5 yields

It follows that

(13)

�(U2 − 2�U + 2�IdH)f , f � = �((U − �IdH)2 − �
2
IdH + 2�IdH)f , f �

= �(U − �IdH)2f , f � + �(2�− �
2)f , f �

= �(U − �IdH)f , (U − �IdH)f � + (2�− �
2)�f , f �

≥ (2�− �
2)�f , f �.

0 ≤ UV = U(IdH − U) = U −U2
.

�Uf ,Uf � + 2��Vf , f � ≤ �Uf , f � + 2��(IdH −U)f , f �

= (1− 2�)�Uf , f � + 2��f , f � ≤ 2��f , f �,

�Uf ,Uf � ≤ 2��f , f � − 2��Vf , f � = 2��Uf , f �.

(14)

∑

j∈J

|�j f |
2 ≥

∑

j∈J

|�̃jSKf |
2 +

∑

j∈Kc

|�j f |
2 =

∑

j∈J

|�̃jSKc f |2 +
∑

j∈K

|�j f |
2

≥ (2�− �
2)
∑

j∈K

|�j f |
2 + (1− �

2)
∑

j∈Kc

|�j f |
2
.

�S−1SKc f , SKc f � + 2(1− �)�SKf , f � + (2�− 1)�Sf , f �

≥ (2�− �
2)�S

1
2 f , S

1
2 f � = (2�− �

2)�Sf , f �.

(15)

�S−1SKf , SKf � = �S−1SKc f , SKc f � + 2(1− �)�SKf , f �

+ (2�− 1)�Sf , f � − 2��SKc f , f �

≥ (2�− �
2)�Sf , f � − 2��SKc f , f �

= 2�(�Sf , f � − �SKc f , f �)− �
2�Sf , f �

= 2��SKf , f � − �
2�Sf , f �.
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Noting that

we have

For each f ∈ H, since

from (17) it follows that

Clearly, U = S−
1
2 SKS

− 1
2 and V = S−

1
2 SKc S−

1
2 are positive and UV = VU . Thus,

from which we conclude that SK − SKS
−1SK ≥ 0. Therefore,

This completes the proof.

(16)

�S−1SKf , SKf � + 2��SKc f , f �

= �S−1SKc f , SKc f � + 2(1− �)�SKf , f � + (2�− 1)�Sf , f �

= �S−1SKc f , SKc f � + 2�SKf , f � + 2�(�Sf , f � − �SKf , f �)− �Sf , f �

= �S−1SKc f , SKc f � + �SKf , f � − �SKc f , f � + 2��SKc f , f �,

(17)

�S−1SKc f , SKc f � + �SKf , f � = �S−1SKf , SKf � + �SKc f , f �

≥ 2��SKf , f � − �
2�Sf , f � + �SKc f , f �

= (2�− �
2)�SKf , f � + (1− �

2)�SKc f , f �.

(18)

∑

j∈J

|�̃jSKf |
2 +

∑

j∈Kc

|�j f |
2 = �SS−1SKf , S

−1SKf � + �SKc f , f �

= �S−1SKf , SKf � + �SKc f , f �

= �S−1SKc f , SKc f � + �SKf , f �

= �SS−1SKc f , S−1SKc f � + �SKf , f �

=
∑

j∈J

|�̃jSKc f |2 +
∑

j∈K

|�j f |
2
,

(19)

∑

j∈J

|�̃jSKf |
2 +

∑

j∈Kc

|�j f |
2 =

∑

j∈J

|�̃jSKc f |2 +
∑

j∈K

|�j f |
2

≥ (2�− �
2)�SKf , f � + (1− �

2)�SKc f , f �

= (2�− �
2)
∑

j∈K

|�j f |
2 + (1− �

2)
∑

j∈Kc

|�j f |
2
.

0 ≤ UV = U(IdH −U) = U − U2 = S−
1
2 (SK − SKS

−1SK)S
− 1

2 ,

∑

j∈J

|�̃jSKc f |2 +
∑

j∈K

|�j f |
2 =

∑

j∈J

|�̃jSKf |
2 +

∑

j∈Kc

|�j f |
2

= �S−1SKf , SKf � + �SKc f , f � ≤ �SKf , f � + �SKc f , f �

= �(SK + SKc )f , f � = �Sf , f � =
∑

j∈J

|�j f |
2
.
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If {�j ∈ End
∗
A(H,Kj)}j∈J is a Parseval g-frame for H with respect to {Kj}j∈J, then its 

g-frame operator S is equal to IdH. For any K ⊂ J and any f ∈ H, we have

Similarly, we have

Hence, Theorem 6 leads to a direct consequence as follows.

Corollary 7 Let  {�j ∈ End
∗
A(H,Kj)}j∈J  be a Parseval g-frame for H with respect to 

{Kj}j∈J, then for any � ∈ [0, 1], for all K ⊂ J and all f ∈ H, we have

Remark 8 If we take � = 1
2
 in Theorem  6 and Corollary 7, then we can obtain the ine-

qualities in Theorems  1 and  2.

Theorem  9 Let {�j ∈ End
∗
A(H,Kj)}j∈J be a g-frame for H with respect to {Kj}j∈J 

with canonical dual g-frame {�̃j}j∈J. Then for any � ∈ [ 1
2
, 1], for all K ⊂ J and all f ∈ H , 

we have

Proof Let S be the g-frame operator of {�j}j∈J. As mentioned before, 
SK − SKS

−1SK ≥ 0 , thus for each f ∈ H we have

(20)

∑

j∈J

|�̃jSKf |
2 =

∑

j∈J

��̃jSKf , �̃jSKf � =
∑

j∈J

��jSKf ,�jSKf �

=
∑

j∈J

��∗
j �jSKf , SKf � = �SKf , SKf � =

∣∣∣∣
∑

j∈K

�∗
j �j f

∣∣∣∣
2

.

(21)
∑

j∈J

|�̃jSKc f |2 =

∣∣∣∣
∑

j∈Kc

�∗
j �j f

∣∣∣∣
2

.

(22)

�f , f � ≥

∣∣∣∣
∑

j∈K

�∗
j �j f

∣∣∣∣
2

+
∑

j∈Kc

|�j f |
2 =

∣∣∣∣
∑

j∈Kc

�∗
j �j f

∣∣∣∣
2

+
∑

j∈K

|�j f |
2

≥ (2�− �
2)
∑

j∈K

|�j f |
2 + (1− �

2)
∑

j∈Kc

|�j f |
2
.

(23)0 ≤
∑

j∈K

|�j f |
2 −

∑

j∈J

|�̃jSKf |
2 ≤ (2�− 1)

∑

j∈Kc

|�j f |
2 + (�− 1)2

∑

j∈J

|�j f |
2
.

(24)

(4�− 2�
2 − 1)

∑

j∈K

|�j f |
2 + (1− 2�

2)
∑

j∈Kc

|�j f |
2

≤
∑

j∈J

|�̃jSKf |
2 +

∑

j∈J

|�̃jSKc f |2 ≤ 2�
∑

j∈J

|�j f |
2
.

(25)0 ≤ �SKf , f � − �S−1SKf , SKf � =
∑

j∈K

|�j f |
2 −

∑

j∈J

|�̃jSKf |
2
.
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From (15) it follows that

Combination of (25) and (26) yields (23). It remains to prove (24). Using formulas (15) 
and (17) we obtain

Since S−
1
2 SKS

− 1
2 and S−

1
2 SKc S−

1
2 are positive and self-adjoint, by Lemma 5 we have

This together with (27) gives (24).
By (20), (21) and above theorem, we immediately get the following result.

Corollary 10 Let {�j ∈ End
∗
A(H,Kj)}j∈J be a Parseval g-frame for H with respect to 

{Kj}j∈J. Then for any � ∈ [ 1
2
, 1],for all K ⊂ J and all f ∈ H, we have

(26)

∑

j∈K

|�j f |
2 −

∑

j∈J

|�̃jSKf |
2 = �SKf , f � − �S−1SKf , SKf �

≤ �SKf , f � − 2��SKf , f � + �
2�Sf , f �

= (1− 2�)�SKf , f � + �
2�Sf , f �

= (1− 2�)(�Sf , f � − �SKc f , f �)+ �
2�Sf , f �

= (2�− 1)�SKc f , f � + (�− 1)2�Sf , f �

= (2�− 1)
∑

j∈Kc

|�j f |
2 + (�− 1)2

∑

j∈J

|�j f |
2
.

(27)

∑

j∈J

|�̃jSKf |
2 +

∑

j∈J

|�̃jSKc f |2 = �S−1SKf , SKf � + �S−1SKc f , SKc f �

≥ 2��SKf , f � − �
2�Sf , f � + (2�− �

2 − 1)�SKf , f � + (1− �
2)�SKc f , f �

= (4�− 2�
2 − 1)�SKf , f � + (1− 2�

2)�SKc f , f �

= (4�− 2�
2 − 1)

∑

j∈K

|�j f |
2 + (1− 2�

2)
∑

j∈Kc

|�j f |
2
.

(28)

∑

j∈J

|�̃jSKf |
2 +

∑

j∈J

|�̃jSKc f |2 = �S−1SKf , SKf � + �S−1SKc f , SKc f �

= �S−
1
2 SKS

− 1
2 S

1
2 f , S−

1
2 SKS

− 1
2 S

1
2 f � + �S−

1
2 SKc S−

1
2 S

1
2 f , S−

1
2 SKc S−

1
2 S

1
2 f �

≤ 2��S−
1
2 SKS

− 1
2 S

1
2 f , S

1
2 f � + 2��S−

1
2 SKc S−

1
2 S

1
2 f , S

1
2 f �

= 2��SKf , f � + 2��SKc f , f � = 2��Sf , f � = 2�
∑

j∈J

|�j f |
2
.

(29)0 ≤
∑

j∈K

|�j f |
2 −

∣∣∣∣
∑

j∈K

�∗
j �j f

∣∣∣∣
2

≤ (2�− 1)
∑

j∈Kc

|�j f |
2 + (�− 1)2�f , f �.

(30)

(4�− 2�
2 − 1)

∑

j∈K

|�j f |
2 + (1− 2�

2)
∑

j∈Kc

|�j f |
2

≤

∣∣∣∣
∑

j∈K

�∗
j �j f

∣∣∣∣
2

+

∣∣∣∣
∑

j∈Kc

�∗
j �j f

∣∣∣∣
2

≤ 2��f , f �.
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Remark 11 The inequalities in Theorems  3 and  4 can be obtained when taking � = 1
2
 

in Theorem  9 and Corollary  10.

Conclusions
In this work, we present several double inequalities with flexible scalars for g-frames 
in Hilbert C∗-modules and show that they are more general and cover some existing 
results.
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