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Background
The conjugate gradient method

The conjugate gradient method is a very important and efficient technique for solving 
large scale minimization problems, due to it can complete with lower storage and simple 
computation (Birgin and Martinez 2001).

Consider an unconstrained minimization problem.

where Rn denotes an n-dimensional Euclidean space and f : Rn−→R1 is a continuously 
differentiable function. We denote its gradient ∇f(xk) bygk. We are concerned with the 
conjugate gradient methods for solving (1). The iterative process of the conjugate gradi-
ent method is given by.

where x1 is the initial point and xk ∊ Rn is the k-th approximation to a solution, αk is a 
positive step size, and dk ∊ Rn is a search direction defined by the following:

where βk is a parameter.

(1)min f (x), x ∈ Rn

(2)xk+1 = xk + αkdk, k = 1, 2, . . .

(3)dk =

{

−gk , k = 1
−gk + βkdk−1, k ≥ 2
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Selection of step size

For selection of step size αk in the iteration formula, it is generally determined by the 
direct method (0.618 method), the analytical method (successive difference approxima-
tion method), exact line search and inexact line search methods and so on. What we 
usually used in nonlinear conjugate gradient method is the exact line search and inexact 
line search. In this paper, we mainly use the Wolfe line search as following

Given µ ∈

(

0, 12

)

, σ ∈ (µ, 1) and αk > 0 which satisfies 

Generally, the smaller the value of σ, the line search will be more precise, but the 
greater the amount of calculation. So we set μ = 0.1, σ ∊ [0.6, 0.8]. In order to facilitate 
analysis, the inexact line search should convert to the exact line search, but in the for-
mula (5), when σ → 0, the search is not the exact line search. For this purpose, Fletcher 
proposed the stronger condition to take the place of (5): 

We note (4) and (6) as the strong Wolfe line search.

Selection of search direction

The search direction dk is generally required to satisfy 

which guarantees that dk is a descent direction of f(x) at xk (Yuan 1993). In order to 
maintain the global convergence property, we sometimes require dk to satisfy a sufficient 
descent condition 

where c > 0 is a constant.

Selection of the parameter βk
Different parameters βk of different conjugate gradient methods as follows (see (i) 
Fletcher and Reeves 1964, (ii) Polyak 1969; Polak et al. 1968, (iii) Hestenes and Stiefel 
1952, (iv) Vincent 1983, (v), (vi) Dai and Yuan 2000). 

(4)f (xk)− f (xk + αkdk) ≥ −µαk∇f (xk)
T
dk

(5)f (xk)− f (xk + αkdk) ≥ −σαk∇f (xk)
T
dk

(6)
∣

∣

∣
g(xk + αkdk)

Tdk

∣

∣

∣
≤ σ

∣

∣

∣
gTk dk

∣

∣

∣

(7)dTk gk < 0

gTk dk ≤ −c
∥

∥gk
∥

∥

2

(i) βFR
k =

||gk ||
2

||gk−1||
2
, (ii) βPRP

k =
gTk yk−1

||gk−1||
2
, (iii) βHS

k =
gTk yk−1

dTk−1yk−1

(iv) βCD
k = −

||gk ||
2

dTk−1gk−1

, (v) βLS
k =

gTk yk−1

−dTk−1gk−1

, (vi) βDY
k =

||gk ||
2

dTk−1yk−1
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For positive quadratic function, if we adopt the exact line search, several conjugate 
gradient methods in the above are equivalent, which implies that the conjugate gradient 
directions generated by several methods are equivalent. In practical application, the FR 
method and PRP method are the most common methods.

The FR method is the earliest nonlinear conjugate gradient method, under the exact line 
search, Powell (1977) pointed out the FR method could continuously produce small steps and 
have the global efficiency property. Zoutendijk (1970) proved the FR method are always con-
vergence for general non-convex functions; Under the inexact line search, Al-Baali (1985); Liu 
et al. (1995) proved when σ ≤ 1

2, the FR method has the global convergence property with 
strong Wolfe line search. But the shortcoming is the FR method has slow convergence speed.

The PRP method is considered to be the best conjugate gradient method in numerical 
experiment results at present. Once produce a small step size, the next search direction 
generated by the PRP algorithm will approach the negative gradient direction automati-
cally. It’s good to avoid the shortcoming that the FR method could continuously pro-
duce small steps. Under the exact line search, the PRP method has global convergence 
property for uniformly convex functions, but it is not established for general non-con-
vex functions (Powell 1984). Under the inexact line search, if search direction is descent 
direction and the objective function is uniformly convex function, Yuan (1995) proved 
the PRP method has the global convergence property with Wolfe line search.

The characteristics of the HS method are similar to the PRP method, but compared 
with PRP method, an important feature of the HS method is that no matter whether the 
line precision is exist, the conjugate relation dT

k+1yk = 0 is always formed.
The CD method is very similar with the FR method. Under the exact line search, 

βk
CD = βk

FR; Under the inexact line search, an important feature of the CD algorithm is that 
as long as the parameter σ < 1 in strong Wolfe line search, the CD method would generate a 
descent search direction in each iteration, but its global convergence property is not good.

Under the exact line search, the LS method is equivalent to the PRP method.
The DY method can always generate a descent direction in each iteration with Wolfe 

line search, but the disadvantage of this method is the bad numerical experiment results.
In the paper, we learn and analyze the above methods, then proposed two hybrid non-

linear conjugate gradient method, namely, the hybrid method of DY and HS and the 
hybrid method of FR and PRP. We also have a research on both each methods.

Hybrid conjugate gradient method of DY and HS
Preliminaries of the new conjugate gradient method

To the hybrid conjugate gradient method of DY and HS, we promote the Wolfe line 
search in our paper. The standard Wolfe line search (5) is revised as the following:

If dk
Tgk+1 ≥ 0, then

where −σ2d
T
k gk <− σ2d

T
k

(

gk − gk+1

)

If dk
Tgk+1 < 0, then 

where −σ2d
T
k

(

gk − gk+1

)

< −σ2d
T
k gk .

(8)σ1d
T
k gk ≤ dTk g(xk + αkdk) ≤ −σ2d

T
k gk

(9)σ1d
T
k gk ≤ dTk g(xk + αkdk) ≤ −σ2d

T
k

(

gk − gk+1

)
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The parameters βk of the hybrid conjugate gradient method is formulized as 

i.e. 

where a1, a2 are nonnegative numbers and at least one are not zero, and that they are 
required to satisfy

A new Wolfe line search is proposed, which makes the hybrid conjugate gradient 
method keep the global convergence property and the descent property in this paper.

When βk  =  0, the new hybrid method will degenerate into the steepest descent 
method.

Algorithm (The new hybrid method with the new Wolfe line search)
Step 1: Choose an initial point x1 ∊ Rn. Give the precision value ɛ > 0. Compute g1, if 
‖g1‖ < ɛ, then stop, x1 is the optimal point; otherwise go to Step 2
Step 2: Set d1 = − g1. Let k = 1
Step 3: Set xk+1 = xk + αkdk, αk is defined by the new generalized Wolfe line search (4) (8) 
(9)
Step 4: Compute gk+1, if ‖gk+1‖ < ɛ, then stop; otherwise go to Step 5
Step 5: Set k := k + 1; Set dk = −gk + β1

k dk−1, βk
(1) is defined by the formula (10), then 

go to Step 3

The descent property

Assumption H
H1: The objective function f(x) is a continuously differentiable function. The level set 
L1 = {x ∊ Rn: f(x) ≤ f(x1)} at x1 is bounded (x1 is the initial point); namely, there exists a 
constant a > 0 such that

H2: In any neighborhood N of L1, f is continuously differentiable, and its gradient g(x) is 
Lipschitz continuous with Lipschitz constant L > 0; i.e.,
∥

∥g(x)− g
(

y
)∥

∥ ≤
∥

∥Lx − y
∥

∥   for all x, y ∊ N

Lemma 1 Suppose that the objective function satisfies Assumption H. Consider the 
method (2), (3), where αk satisfies the new Wolfe line search (4), (8), (9) and βk

(1) satisfies 
the formula (10), then the following holds: 

β
(1)
k =

{

a1β
DY
k + a2βHS

k if
∥

∥gk
∥

∥

2
>

∣

∣gTk gk−1

∣

∣

0 else

(10)β
(1)
k =

{

a1�gk�
2

dTk−1(gk−gk−1)
+

a2g
T
k (gk−gk−1)

dTk−1(gk−gk−1)
if
∥

∥gk
∥

∥

2
>

∣

∣gTk gk−1

∣

∣

0 else

(11)0 < a1 + 2a2 <
1

1+ σ2
< 1

�x� ≤ a for all x ∈ L1
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Proof For k = 1, we have g1
Td1 = g1

Tg1 = − ‖g1‖2 < 0 according to d1 = − g1.
For k > 1, suppose that gk

Tdk < 0 holds at the k-th step, then we prove this inequality 
also holds at the k + 1-th step.

From ‖gk‖2 > |gk
Tgk−1| and (11), we have that

 Then, by 0 < a1 + 2a2 <
1

1+σ2
< 1 and 0 ≤ σ2 < 1, we have gT

k+1dk+1 < 0.
Therefore, according to the mathematical induction, Lemma 1 is proved, which implies 

that the new hybrid method has the descent property.

Global convergence

Lemma 2 Assume that (H) hold, Consider the method (2), (3), where dk is a descent 
direction and αk satisfies the new Wolfe line search (4), (8), (9), βk

(1) satisfies the formula 
(10). Then we have that 

∑

k≥1
(gTk dk )

2

�dk�
2 < ∞

Proof By Lemma 1, we have gk
Tdk < 0, so the sequence {f(xk)} is bounded and has mono-

tone descending property, which implies that {f(xk)} is a convergent sequence. From (8), 
(9), we have 

From the Assumption H2, we have 

From (12), (13), we have 

From (8), (14), we have 

gTk dk < 0 for all k

gTk+1dk+1 = −�gk+1�
2 + β

(1)
k+1g

T
k+1dk

= −�gk+1�
2 +

[

a1�gk+1�
2

dTk (gk+1 − gk)
+

a2g
T
k+1(gk+1 − gk)

dTk (gk+1 − gk)

]

· gTk+1dk

≤ −�gk+1�
2 +

(a1 + a2)�gk+1�
2 − a2g

T
k+1gk

dTk (gk+1 − gk)
(−σ2d

T
k (gk − gk+1))

≤ −�gk+1�
2 +

(a1 + 2a2)�gk+1�
2

dTk (gk+1 − gk)
· (−σ2d

T
k (gk − gk+1))

= [(a1 + 2a2)σ2 − 1]�gk+1�
2

(12)0 < (σ1 − 1)gTk dk ≤ dTk
(

gk+ 1 − gk
)

≤ −(1+ σ2)g
T
k dk

(13)dTk (gk+1 − gk) ≤ Lαk
∥

∥dk
∥

∥

2

(14)αk ≥
gTk dk(σ1 − 1)

L
∥

∥dk
∥

∥

2

fk − fk+1 ≥ −µαkg
T
k dk ≥

−µ(gTk dk)
2(σ1 − 1)

L
∥

∥dk
∥

∥

2
=

µ(1− σ1)

L
·
(gTk dk)

2

∥

∥dk
∥

∥

2



Page 6 of 10Xu and Kong  SpringerPlus  (2016) 5:881 

By summing this formula, we have 

Then 

The proof is completed.

Theorem  3 Suppose that Assumption H1 and H2 are satisfied. Consider the method 
(2), (3), where αk satisfies the new Wolfe line search (4), (8), (9), βk

(1) satisfies the formula 
(10). Then the following holds:  

Proof If lim k→∞ inf ‖gk‖ = 0 is not true, there exists a constant c > 0 such that

Therefore, from dk = −gk + β
(1)
k dk−1, multiplying with gk on the both sides, we have 

gTk dk = −
∥

∥gk

∥

∥

2
+ β

(1)
k gTk dk−1. Thus (8) and (9) yield 

Then 

On the other hand, from ‖gk‖2 > |gk
Tgk−1|, we have 

If gk
Tdk−1 ≥ 0, then 

∑

k≥1

(fk − fk+1) = f1 − lim
k→∞

fk ≥
∑

k≥1

µ(1− σ1)

L
·
(gTk dk)

2

∥

∥dk
∥

∥

2

∑

k≥1

(gTk dk)
2

∥

∥dk
∥

∥

2
< ∞

lim
k→∞

inf
∥

∥gk
∥

∥ = 0

(15)
∥

∥gk
∥

∥

2
> c, for all k

−σ2 <
gTk dk−1

gTk−1dk−1

< σ1

(16)
σ1

σ1−1
<

gTk dk−1

dTk−1

(

gk − gk−1

) <
σ2

σ2 + 1

−gTk dk
∥

∥gk
∥

∥

2
= 1−

β
(1)
k gTk dk−1
∥

∥gk
∥

∥

2

= 1−

[

a1
∥

∥gk
∥

∥

2

dTk−1(gk − gk−1)
+

a2g
T
k (gk − gk−1)

dTk−1(gk − gk−1)

]

·
gTk dk−1
∥

∥gk
∥

∥

2

−gTk dk
∥

∥gk
∥

∥

2
≥ 1−

(a1 + 2a2)
∥

∥gk
∥

∥

2

∥

∥gk
∥

∥

2
·

gTk dk−1

dTk−1(gk − gk−1)

= 1− (a1 + 2a2) ·
gTk dk−1

dTk−1(gk − gk−1)
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If gk
Tdk−1 < 0, then 

Therefore, by (16), we have 

And, by squaring both sides of dk + gk = β
(1)
k dk−1, we have 

Then by multiplying with (gk
Tdk)2 on the both sides, we have 

However, because of

and thus from (17), we have 

By using the recurrence method on the left-hand side of the above inequality, there 
exists a constant T > 0 such that 

−gTk dk
∥

∥gk
∥

∥

2
≤ 1−

(a1 + 2a2)
∥

∥gk
∥

∥

2

∥

∥gk
∥

∥

2
·

gTk dk−1

dTk−1(gk − gk−1)

= 1− (a1 + 2a2) ·
gTk dk−1

dTk−1(gk − gk−1)

(17)1− (a1 + 2a2)
σ2

σ2 + 1
≤

−gTk dk
∥

∥gk
∥

∥

2
≤ 1− (a1 + 2a2) ·

σ1

σ1 − 1

∥

∥dk
∥

∥

2
= −

∥

∥gk
∥

∥

2
− 2gTk dk + (β

(1)
k )2

∥

∥dk−1

∥

∥

2

∥

∥dk
∥

∥

2

(gTk dk)
2
=

(β
(1)
k )2

∥

∥dk−1

∥

∥

2

(gTk dk)
2

−
2

gTk dk
−

∥

∥gk
∥

∥

2

(gTk dk)
2

=
(β

(1)
k )2

∥

∥dk−1

∥

∥

2

(gTk dk)
2

−

(

1
∥

∥gk
∥

∥

+

∥

∥gk
∥

∥

gTk dk

)2

+
1

∥

∥gk
∥

∥

2

≤
(β

(1)
k )2

∥

∥dk−1

∥

∥

2

(gTk dk)
2

+
1

∥

∥gk
∥

∥

2

(β
(1)
k )2 =

[

a1
∥

∥gk
∥

∥

2

dTk−1(gk − gk−1)
+
a2g

T
k (gk − gk−1)

dTk−1(gk − gk−1)

]2

≤
(a1 + 2a2)

2
∥

∥gk
∥

∥

4

(dTk−1(gk − gk−1))
2
,

∥

∥dk
∥

∥

2

(gTk dk)
2
≤

(a1 + 2a2)
2
∥

∥gk
∥

∥

4

(dTk gk)
2

·

∥

∥dk−1

∥

∥

2

(dTk−1(gk − gk−1))
2
+

1
∥

∥gk
∥

∥

2

≤
(a1 + 2a2)

2

[1− (a1 + 2a2)
σ2

σ2+1 ]
2
·

∥

∥dk−1

∥

∥

2

(dTk−1(gk − gk−1))
2
+

1
∥

∥gk
∥

∥

2

�
=m ·

∥

∥dk−1

∥

∥

2

(dTk−1(gk − gk−1))
2
+

1
∥

∥gk
∥

∥

2
(m > 0)

∥

∥dk
∥

∥

2

(gTk dk)
2
≤

k
∑

i=1

mk−i

∥

∥gk
∥

∥

2
≤

1

c

k
∑

i=1

mk−i ≤ T
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By summing the above inequality, we have 
∑

k≥1
(gTk dk )

2

�dk�
2 ≥

∑

k≥1 1/T = +∞, which 
contradicts Lemma 2. So the proof is complete.

Hybrid conjugate gradient method of FR and PRP
As the hybrid conjugate gradient method of DY and HS, we promote the Wolfe line 
search as well in our paper. The standard Wolfe line search (5) is revised as the following:

If −
∥

∥gk
∥

∥

2
≤ dTk g

T
k  then

If −
∥

∥gk
∥

∥

2
> dTk g

T
k  then

The parameters βk of the hybrid conjugate gradient method of FR and PRP is for-
mulized as

where a1, a2 are nonnegative parameters and also at least one is not zero, and they are 
required to satisfy

The new Wolfe line search also can make the hybrid conjugate gradient method of FR 
and PRP keep the global convergence property and the descent property in this paper.

Both the properties can be proofed by the same process as the hybrid method of DY 
and HS.

Numerical experiments
In this section, we report some preliminary numerical experiments. We chose 15 test 
problems (problems 21–35) with the dimension n = 10,000 and initial points from the 
literature (More et  al. 1981) to implement the two hybrid methods with the new line 
search with a portable computer. The stop criterion is ‖gk‖ ≤ 10−6 and we set the param-
eters as a1 = 0.2, a2 = 0.2, σ1 = σ2 = 0.6 and μ = 0.4. Four conjugate gradient algorithms 
(DY, Hybrid conjugate gradient method of DY and HS, PRP, Hybrid conjugate gradi-
ent method of FR and PRP) are compared in numerical performance and the numerical 
results are given in Table 1.

In Table 1, CPU denotes the CPU time (seconds) for solving all the 15 test problems. A 
pair numbers means the number of iterations and the number of functional evaluations. 
It can be seen from Table 1 that two hybrid methods with the new Wolfe line search is 
effective for solving some large scale problems. In particular, the Hybrid conjugate gradi-
ent method of FR and PRP seems to be the best one among the four algorithms because 
it uses the least number of iterations and functional evaluations when the algorithms 
reach the same precision.

(18)σ1d
T
k g

T
k ≤ dTk g

T
k+1 ≤ −σ2d

T
k g

T
k

(19)−σ1
∥

∥gk
∥

∥

2
≤ dTk g

T
k+1 ≤ σ2

∥

∥gk
∥

∥

2

(20)β
(2)
k =

{

a1β
FR
k + a2β

PRP
k if

∥

∥gk
∥

∥

2
>

∣

∣gTk gk−1

∣

∣

0 else

(21)0 < a1 + 2a2 <
1

1+ σ2
< 1
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Conclusion
In this paper, we have proposed two hybrid conjugate gradient methods, respectively 
are the hybrid method of DY and HS, the hybrid method of FR and PRP. Moreover, we 
have proposed the corresponding new Wolfe line search, which make the corresponding 
hybrid method keep the global convergence property and the descent property.

Dai and Yuan have proposed a family of the three-term conjugate gradient method:

where λk ∊ [0, 1], μk ∊ [0, 1], ωk ∊ [0, 1−μk].
Let μk = 1, ωk = 0, we have

Let μk = ωk = 0, then we have

In our paper, βk can be rewritten as

βk =
(1− �k)

∥

∥gk
∥

∥

2
+ �kg

T
k (gk − gk−1)

(1− µk − ωk)
∥

∥gk−1

∥

∥

2
+ µkd

T
k−1(gk − gk−1)− ωkd

T
k−1gk−1

(22)βk =
(1− �k)

∥

∥gk
∥

∥

2
+ �kg

T
k (gk − gk−1)

dTk−1(gk − gk−1)

(23)
βk =

(1− �k)
∥

∥gk
∥

∥

2
+ �kg

T
k (gk − gk−1)

∥

∥gk−1

∥

∥

2

β
(1)
k =

a1
∥

∥gk
∥

∥

2
+ a2g

T
k (gk − gk−1)

dTk−1(gk − gk−1)

β
(2)
k =

a1
∥

∥gk
∥

∥

2
+ a2g

T
k (gk − gk−1)

∥

∥gk−1

∥

∥

2

Table 1 Number of iterations and number of functional evaluations

p n DY DY and HS PRP FR and PRP

21 10^4 72/222 70/212 58/179 50/189

22 10^4 74/532 70/520 63/429 58/409

23 10^4 62/241 60/241 41/198 40/176

24 10^4 89/304 89/300 82/297 82/302

25 10^4 51/153 44/143 46/127 44/107

26 10^4 55/202 56/202 52/198 46/188

27 10^4 45/246 46/238 52/239 42/209

28 10^4 91/425 84/415 84/337 80/312

29 10^4 58/245 55/240 45/211 39/183

30 10^4 53/308 48/298 43/281 43/277

31 10^4 74/268 74/258 76/281 70/265

32 10^4 77/457 74/447 87/421 82/425

33 10^4 48/172 38/152 37/136 33/126

34 10^4 82/396 80/383 58/385 56/354

35 10^4 76/342 74/322 72/276 68/256

CPU – 355 s 312 s 252 s 231 s
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The difference between (22), (23) and βk
(1), βk

(2) defined in the paper is the numerator 
‖gk‖2 and gk

T(gk − gk−1) are convex combination of the formula (22), (23), however, in the 
formula βk

(1), βk
(2), a1 + a2 ≠ 1, which have weakened the condition.
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