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Background
The financial crisis of 2008 reaffirmed the need to monitor risk in the banking sector as 
it has a ripple effect on the overall economy. The insolvency of most financial outfits at 
that time was as a result of increasing amounts of capital invested into long term and 
risky assets especially in the real estate market (Cannata and Quagliariello 2009; Bru-
sov et  al. 2015). Now more than ever, matters of subprime lending and the relevance 
of maintaining adequate capital to absorb adverse market conditions have become very 
important to bank managers and financial regulators (Erkens et al. 2012; Flannery 2014). 
Policy makers have recommended changes to already existing coordinated regulation 
to avert the probability of such occurrence in future. These changes include, significant 
increment in Capital to Risk (Weighted) Assets Ratio (CRAR) which is dependent on 
both the capital required and the capital resources to meet the requirements (Hasan 
et al. 2015). As a step in that direction, this paper’s primary aim is to use an asset-lia-
bility modeling approach via optimization techniques based on the CRAR to guarantee 
banks of meeting the stipulated regulation of Basel III with great likelihood irrespective 
of changes in forward market value of assets.

Asset-liability management in the banking sector primarily seeks to maximize profit 
through high returns on loans and other financial instruments, minimize risk as a result 
of mismatches between assets and liabilities and provide for liquidity needs (Choudhry 
2012). Most banks manage their assets by issuing loans to creditors who have the 
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capability to pay high interest rates and have minimal probability of default on their 
loans. Banks also diversify their investment portfolio and invest in securities with high 
returns and minimal risk in a bid to manage their assets. Over the years, several tech-
niques and tools have been developed to aid bank managers in making the right invest-
ment decisions whilst reducing risk (see Szegö 2014; Bessis 2015; McNeil et al. 2015, for 
detailed reference). Policy makers have designed an internationally coordinated regu-
lation known as the Basel Accord to ensure banks can absorb a reasonable and suffi-
cient level of losses, which might otherwise threaten their solvency (Arnold et al. 2012; 
Lee 2014). Basel III bolsters and re-evaluates the global capital framework by increas-
ing banks capital to risk (weighted) assets ratio (CRAR) requiring banks to raise capital 
defenses in times when credit is at excessive levels while upholding a financially sound 
banking environment which is the foundation of a functional market economy (Leignick 
and Wohltmann 2015). Banks manage the liquidity of their assets in order to meet 
reserve requirements such as the Third Basel Accord without incurring high costs.

Berger et al. (2008), Flannery and Rangan (2008) and Gropp and Heider (2010) show 
that banks CRAR respond to the shocks in the regulatory requirements and that banks 
actively manage their target capital levels that tend to exceed the minimally required 
ones. Athanasoglou et al. (2008) iterates the fact that banks with strong financial founda-
tion and position pursue investment opportunities more effectively and have more time 
and awareness to counter problems such as unexpected losses thus attaining increased 
profitability. The application of the minimum capital to risk (weighted) assets ratio pro-
tects depositors and promotes the stability and efficiency of the financial systems. In 
their panel regressions on individual bank capital requirements in the UK, Bridges et al. 
(2014) observed that changes in micro prudential regulatory capital requirements affects 
capital ratios held by the banks and also affect lending with heterogeneous feedbacks in 
diverse sectors of the economy. Their finding shows how meeting capital a requirement 
is an important component of banks asset structure.

In this paper, we propose a chance-constrained optimization model by considering 
loan distribution follows a right truncated Gaussian distribution, to guarantee banks of 
coping with Basel III capital requirements even under the worst case scenario. We deal 
with an optimal portfolio model assuming that loans and a treasury bill are the invest-
ments made by the bank. The problem is faced under a theoretical perspective as well 
as simulation analysis. The introduction of a CRAR constraint characterized by the 
assumption made on the loan distribution, the construction of the deterministic con-
vex counterpart of the CRAR chance constraint to obtain a tractable linear second order 
cone constraint and modified CreditMetrics approach represents the main novelty of 
this research paper.

To achieve our aim, we consider an optimization problem with the chance constraint 
of capital to risk (weighted) assets ratio under the condition that information regard-
ing the distribution, mean and covariance of the risky asset in this case loan are known. 
Charnes and Cooper (1996) introduced chance-constrained programs. Over the years, 
significant literature have been established in this regard (see Prékopa 1995; Uryasev 
2000; Delage and Mannor 2010; Barrera et al. 2014, for detailed discussion and applica-
tions). In finance and engineering, several problems can and have been constructed as 
chance-constrained stochastic linear programs of the form
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where x ∈ R
n is the decision vector(investment allocations) and the uncertain constraint 

coefficients ai(ζ ) ∈ R
n and bi(ζ ) ∈ R, ∀i = 1, . . . ,m, depend affinely on random vector 

ζ ∈ R
h+1 whose distribution is assumed to be known. 1− ǫ, ǫ ∈ (0, 1) is the risk level or 

safety factor usually given by the modeler. We thus have,

Auxiliary functions yji : Rn → R are introduced for relaxation of notations and are 
defined through

Therefore (1) can be rewritten as

For tractability purposes, we redefine the chance constraint (1) and rewrite (2) as a sin-
gle generic constraint (Zymler et al. 2013), i.e. i = 1 and k = 1

By doing this, we convert the two uncertain parameters, ai(ζ ) ∈ R
n and bi(ζ ) ∈ R 

in (1) to one uncertain parameter, ζ ∈ R
k in (2). We define the random vector 

r =
[

1 ζT
]T ∈ R

h+1 where the first coordinate is a constant random variable and ζ 
is defined as forward market loan value which is estimated by modified CreditMetrics 
approach under a right truncated Gaussian distribution.

We consider all possible credit migration paths as opposed to sample credit migra-
tion paths in the CreditMetrics technical document by Gupton et  al. (1997) and also 
make some other modifications. (see “CreditMetrics approach” section and “Appendix”). 
Luedtke (2014) and Yang and Xu (2016) pointed out that computation of the optimal 
solution of a chance-constrained program is notably hard to solve. Indeed, the only nota-
ble tractable case of the chance constraint formulation is by Calafiore and El Ghaoui’s 
(2006) paper when the chance constraint function is bilinear and the distribution of the 
uncertain data follows a set of radial probability distributions. Empirical evidence have 
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revealed that the normal distribution is not appropriate to estimate credit risk (Crouhy 
et al. 2010). Returns in the credit markets are heavily skewed to the downside and there-
fore are non-normal (Gupton et al. 1997). Saunders and Allen (2010) observed that loans 
have acutely truncated upside returns and long downside risks and that the actual loan 
portfolio value distribution has negative skewness or a long-tailed downside. In this 
paper, we make an informed decision on the random vector r based on Saunders and 
Allen’s (2010) view on the actual loan portfolio distribution and assume that loan dis-
tribution can be described by truncated Gaussian distribution. One possible extension 
would be to consider, instead of truncated Gaussian distributed returns, the more gen-
eral alpha-stable distributed returns (see (Rachev 2003; Rachev et al. 2005)).

The paper is organized as follows. Next section evaluates the probability constraint for 
right truncated Gaussian probability distribution and construct the deterministic convex 
counterpart of the chance constraint. The next section presents the CreditMetrics approach 
to estimate the forward market value of loans. The formulation of the optimization model 
based on the chance constraint of CRAR is structured and presented. We conduct a numeri-
cal example and illustrate the proposed method by a hypothetical example. Results and Con-
cluding remarks are presented in the last section. Details and pseudocodes of the numerical 
procedure described in “CreditMetrics approach” section are given in “Appendix”.

Chance constraint under truncated Gaussian distribution
Inspired by Calafiore (2006), we discuss a facet of the chance-constrained stochastic pro-
gram (1). We evaluate the probability constraint for right truncated Gaussian probabil-
ity distribution and construct specifically the deterministic convex counterpart of the 
chance constraint.

Notation and parameter description

Without loss of generality, based on a standing assumption that the random constraints 
in (2) are independent, we make use of the single generic constraint

and define the random vector

and

Consider v ≤ h+ 1 as the rank of Ŵ and Ŵf .r ∈ R
h+1 as a full rank factor such that 

Ŵ = Ŵf .rŴ
T
f .r. Let

(4)P

{

y0(x)+ y(x)T ζ ≤ 0
}

≥ 1− ǫ, ǫ ∈ (0, 1)

r =
[

1 ζT
]T

∈ R
h+1

r̂ = E{r} = E

{

[

1 ζT
]T

}

=
[

1 ζ̂T
]T

Ŵ = var{r} = var
{[

1 ζT
]}

z̃ =
[

y0(x) y(x)T
]T

∈ R
h+1
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We define the quantity

and

The normalized random variable is defined as

Therefore, we can rewrite constraint (3) as

Formulation

Definition 1  A random vector r ∈ R
h+1 is Y-radial with defining function g(·) if 

r − E(r) = Y η where Y ∈ R
h+1,v is a full rank matrix of a fixed nature and η ∈ R

v is a 
random vector with probability density function fη that is dependent exclusively on the 
norm of η i.e. fη(η) = g(�η�).

From the above definition, the covariance of η is

where Vv is the Euclidean volume of the standard unit ball of radius Rv. The variance of r 
is defined as

Given that var{r} = Ŵ, then Y = sŴf .r , s =
(

Vv

∫∞
0 wv+1g(w)dw

)−1/2 where Ŵf .r is a 
full rank factor of Ŵ i.e. Ŵ = Ŵf .rŴ

T
f .r. The possibly singular multivariate b right truncated 

Gaussian distribution in Rh+1, with mean r̃ and covariance Ŵ is Y-radial with Y = sŴf .r 
and defining function

If r is Y-radial and has defining function g(w) and covariance Ŵ, then

and the cumulative density function is defined as

ϕ(z) = rT z̃

(5)ϕ̂(z) = E{ϕ(z)}

(6)σ 2(z) = var{ϕ(z)} = z̃TŴz̃

ϕ̂(z) = ϕ(z)− ϕ̂(z)

σ (z)
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ϕ̃(z) = z̃Y η/σ(z) = sz̃TŴf .rη/
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z̃T z̃

P{ϕ(z) ≤ 0} = P{ϕ̃(z)/s ≤ −ϕ̂(z)/sσ(z)} = Fϕ̃(z)/s(−ϕ̂(z)/sσ(z))
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Therefore, P{ϕ(z) ≤ 0} ≥ 1− ǫ is equivalent to sF−1(1− ǫ)σ (z)+ ϕ̂(z) ≤ 0 for 
ǫ ∈ (0, 1) .

A b right truncated Gaussian distribution with covariance Ŵ and mean r̂ is Y-radial 
with Y = Ŵf .r , s = 1 and defining function

Appropriately, fϕ̃(z)/s is the b right truncated Gaussian density function

and F is the standard b right truncated Gaussian distribution cumulative probability 
function

and the inverse for the standard b right truncated Gaussian distribution cumulative 
probability function is

Theorem  1  The chance constraint, P{r̂T z̃ ≤ 0} ≥ 1− ǫ, for any ǫ ∈ (0, 1) where r 
has a b right truncated Gaussian distribution with defining function g(w), covari-
ance Ŵ and mean r̂ with s = 1 is equivalent to the second order cone (SOC) constraint 
F
−1
RG(1− ǫ)

√
z̃Ŵz̃ + r̂T z̃ ≤ 0.

CreditMetrics approach
Future bank capital is dependent on the forward market values of assets as well as liabili-
ties. We use a modified CreditMetrics approach to estimate the forward market value of 
loans which is the uncertainty parameter in (3). CreditMetrics from JP Morgan, made 
public and published in 1997, is reviewed in this section. The methodology estimates 
the forward distribution of the changes in portfolio value of loan products at a specified 
time horizon, typically one year. The changes in value are associated with the migration 
in credit quality of the obligor, both up and downgrades, including default. We develop 
a Monte Carlo framework from a modified CreditMetrics approach (see “Appendix”) to 
include all possible migrations and scenarios. This method is adopted for the purpose of 
calculating the forward market value of loans and its associated risk measure.

Fϕ̃(z)/s(−ϕ̂(z)/sσ(z)) =
∫ −ϕ̂(z)/sσ(z)

−∞
fϕ̃(z)/s(L)dL

g(w) = 1
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F(L) = FRG(L) =
∫ L

−∞
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φ(t)dt = 1
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�(L)

F
−1(L) = F

−1
RG(L) = �−1(�(b) · L)
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Rating migration

Based on historical data on loan, Standard and Poor (S&P) construct a transition matrix 
which shows the probability of a rated loan being downgraded, upgraded or defaulting 
during a given period, usually one year. The estimated probabilities of average one-year 
corporate transition rates (1981–2013) of corporations based in Europe are shown in 
Table 1. Each cell in the transition matrix has a probability. The rating sections in the 
rows of the transition matrix signify current credit ratings and the columns of the 
transition matrix show expected credit rating at the end of the year. For example, the 
P(BBB → BB) = 0.0431 show the chances of a BBB-rated loan downgrading to B over 
the ensuing year.

Recovery rates and the probability of default are essential parameters in credit risk 
modeling. Calabrese (2008) defines recovery rate as the payback quota of the loan. Con-
siderable studies on recovery rates on corporate bonds have been performed (Altman 
1989; Schuermann 2004; Renault and Scaillet 2004; Jankowitsch et al. 2014) and Asar-
now and Edwards (1995), Calabrese and Zenga (2008), Khieu et al. (2012) and Calabrese 
(2008) have all investigated bank loans. Carty and Lieberman (1996) and Schuermann 
(2004) made an interesting revelation by showing that the mean of bonds is lower 
than the average recovery rate of bank loans. Calabrese and Zenga (2008) measured 
the recovery rates on non-performing bank loans in Italy by using the boundary prop-
erty [0, 1] in computing the loan recovery rate as the ratio between capitalized actual 
recovery amount and capitalized total exposure, where the latter parameter is the sum 
of Exposure-At-Default , capitalized legal costs and interest on delayed payment. We 
employ loan recovery rates estimated in Calabrese and Zenga (2008) for Italy under cat-
egories of secured and unsecured loans shown in Table 2 for the estimation of forward 
value of loans via a modified CreditMetrics approach.

Table 1  Average 1-year corporate transition rates for  Europe (1981–2013) (%). Source: 
Standard & Poor’s Annual Global Corporate Default Study & Rating Transitions (March 
2014)

RATING AAA AA A BBB BB B CCC/C D Not rated

AAA 83.12 10.76 0.63 0.21 0.00 0.00 0.21 0.00 5.06

AA 0.28 84.32 10.92 0.66 0.00 0.00 0.00 0.00 3.81

A 0.02 2.17 85.95 6.36 0.24 0.02 0.00 0.05 5.20

BBB 0.00 0.12 4.26 82.99 4.31 0.50 0.12 0.10 7.70

BB 0.00 0.00 0.13 4.92 71.46 8.02 0.57 0.57 14.33

B 0.00 0.00 0.07 0.49 7.52 68.31 4.85 3.30 15.46

CCC/C 0.00 0.00 0.00 0.00 0.00 16.22 31.76 31.76 20.27

Table 2  Loan recovery rates of  Italy by  secured status (%). Source: Calabrese and Zenga 
(2008)

Status Secured Unsecured

Mean 56.66 37.98

Standard deviation 30.44 33.87
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Valuation

In this section, we calculate forward value of loans at the end of the risk horizon, 1 year. 
However, since there are 8 possible credit ratings in the transition matrix from Table 1, 
we have to estimate values based on all possible migration paths given maturity dates. 
In the worst case scenario of the loan i.e. default, two input variables are required the 
secured status of the loan and its associated recovery rate.

Valuation is done based on all the possible migration paths, residual cash flows and 
from the one-year forward zero-curve associated with the rating of the issuer. Expected 
upgrade or downgrade in credit rating leads to changes in the value of the loan. The 
magnitude of these changes are accessible with the estimation of forward zero curves for 
each rating Abaffy et al. (2007).

From Table 3, f 1,jcr  is the (j − 1)-year forward rate with credit rating cr thus for year 
1, we have f 1,2cr  and so on. By this interpretation, the entries of Table  3 are spot rates 
from now. Consider f̃ i,i+1

cr  as the one-year forward rate with its associated credit rating 
cri from the end of the i-th year to the end of the (i + 1)-th year. Therefore, the one-year 
forward rate can be estimated by

The discount factor of the cash flow from the end of the jth year to the end of the first 
year for loan type k can be computed by the following

The forward loan value is the sum of discounted cash flows of each year corresponding 
to possible credit rating transition paths till maturity m. Then the forward value, ζkt of a 
unit capital invested in the kth loan with a non-default credit rating migration path t is

where Rk is the interest rate of the kth loan.

(7)
f̃ 1,2cr1

= f 1,2cr1
, i = 1

(1+ f i,i+1
cri

)i = (1+ f̃ i,i+1
cri

)(1+ f 1,icri
)i−1, i = 2, . . . ,m− 1

(8)

d−1
k1 = 1, j = 1

d−1
kj =

j−1
∏

i=1

(

1+ f̃ i,i+1
cri

)

=
j−1
∏

i=1

(1+ f i,i+1
cri

)i

(1+ f 1,icri )
i−1

, j = 2, . . . ,m

(9)ζkt =
m−1
∑

j=1

Rkdkj + (1+ Rk)dkm

Table 3  One-year forward zero curve for  each credit rating category (%). Source: Credit-
Metrics, JP Morgan

Category Year 1(f 1,2cr ) Year 2 (f 1,3cr ) Year 3 (f 1,4cr ) Year 4 (f 1,5cr )

AAA 3.60 4.17 4.73 5.12

AA 3.65 4.22 4.78 5.17

A 3.72 4.32 4.93 5.32

BBB 4.10 4.67 5.25 5.63

BB 5.55 6.02 6.78 7.27

B 6.05 7.02 8.03 8.52

CCC/C 15.05 15.02 14.03 13.52
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In case kth loan defaults before or at the end of the period q = 1, 2, 3, . . . ,m, then the 
forward value, ζkdt, of a unit capital invested in the kth loan with a default credit rating 
migration path dt is

where RRk is the recovery rate if the kth loan which is dependent on the secured status 
in Table 2.

Table 4 shows the possible migration paths for a 2 year BBB-rated loan. There are 49 
non-default paths and 8 default paths. In general, the kth loan with maturity m has 7m 
non-default possible credit rating migration paths. The kth loan with maturity m has 
∑m

q=1 7
q−1 default possible credit rating migration paths.

Expected value and credit risk

Gupton et  al. (1997) and Benz (2002) observed that credit returns are heavily skewed 
to the downside and therefore are non-normal. Saunders and Allen (2010) also made 
an interesting revelation that loans have both acutely truncated upside returns and 
also long downside risks and that the actual loan portfolio value distribution exhibits 
a long-tailed downside or negative skewness. We therefore make an informed decision 
based on empirical evidence on the actual loan portfolio distribution and assume that 
the kth loan year-ahead or forward value, ζk, distribution is described by the right trun-
cated Gaussian distribution. The long downside tail of the distribution of loan returns is 
caused by defaults.

Consider the credit migration path satisfying the Markov property, then the migration 
probability of the kth loan with t non-default path is

and for default path

where Pcri ,cri+1 signify the probability of migration from cri credit rating at the end of the 
ith year to cri+1 credit rating at the end of (i + 1)-th year.

By the assumption of the forward loan value of unit capital invested in the kth loan 
following a right truncated Gaussian distribution at b, then the expected forward loan 
(mean) value and variance of unit capital invested in the kth loan are

and

(10)ζkdt =
q−1
∑

j=1

Rkdkj + RRkdkm

(11)Pkt =
m−1
∏

i=0

Pcri ,cri+1 , t = 1, . . . , 7m

(12)Pkdt =
q−1
∏

i=0

Pcri ,cri+1 , t = 1, . . . ,N N =
m
∑

q=1

7q−1

(13)E(ζk | ζk ≤ b) = µk − σk

[

φ(β)

�(β)

]

, µk =
7m
∑

t=1

ζktPkt +
N
∑

t=1

ζkdtPkdt
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Table 4  Possible migration paths of a 2 year BBB-rated loan

Non-default 
m = 0

Migration 
m = 1

Paths 
m = 2

Default
m = 0

Migration 
m = 1

Paths
 m = 2

1 BBB AAA AAA 1 BBB D

2 BBB AAA AA 2 BBB AAA D

3 BBB AAA A 3 BBB AA D

4 BBB AAA BBB 4 BBB A D

5 BBB AAA BB 5 BBB BBB D

6 BBB AAA B 6 BBB BB D

7 BBB AAA C 7 BBB B D

8 BBB AA AAA 8 BBB C D

9 BBB AA AA

10 BBB AA A

11 BBB AA BBB

12 BBB AA BB

13 BBB AA B

14 BBB AA C

15 BBB A AAA

16 BBB A AA

17 BBB A A

18 BBB A BBB

19 BBB A BB

20 BBB A B

21 BBB A C

22 BBB BBB AAA

23 BBB BBB AA

24 BBB BBB A

25 BBB BBB BBB

26 BBB BBB BB

27 BBB BBB B

28 BBB BBB C

29 BBB BB AAA

30 BBB BB AA

31 BBB BB A

32 BBB BB BBB

33 BBB BB BB

34 BBB BB B

35 BBB BB C

36 BBB B AAA

37 BBB B AA

38 BBB B A

39 BBB B BBB

40 BBB B BB

41 BBB B B

42 BBB B C

43 BBB C AAA

44 BBB C AA

45 BBB C A

46 BBB C BBB

47 BBB C BB

48 BBB C B

49 BBB C C



Page 11 of 20Atta Mills et al. SpringerPlus  (2016) 5:500 

respectively.

Formulation of the model
The optimization model based on the chance constraint of capital to risk (weighted) 
asset requirement is structured and presented in this section. We first determine the 
objective function and then proceed to construct its related constraints.

Objective function

Let R = [R1,R2, . . . ,Ru,Ru+1, . . . ,Ru+v]T be the vector of annual interest rate of loans and 
treasury bill, fixed assets and non-interest earning assets (riskless) with u corresponding 
to the loans and v as the riskless assets. Denote x = [x1, x2, . . . , xu, xu+1, . . . , xu+v]T as 
the vector of asset allocation or investment proportion which is the decision variable. 
Then the objective function can be defined as

Constraints

CRAR constraint

Denote Q as the bank’s total asset amount and TL be the bank’s total liability. Let 
� = [ζT , ξT ]T be a unit vector of assets with ζ = [ζ1, ζ2, . . . , ζu]T and ξ = [ξ1, ξ2, . . . , ξv]T 
corresponding to loans and riskless assets (treasury bill, fixed assets and non-interest earn-
ing assets) respectively. ζ constitutes uncertain parameters which can be estimated (see 
“Valuation” section) and ξ is a deterministic vector of [1+ Ru+1, 1+ Ru+2, . . . , 1+ Ru+v]T. 
Let ̟ k denote the kth asset’s weight factor and 1− ǫ is the safety factor.

According to Basel III, the minimum total capital requirement is 8 %. Basel III intro-
duced two additional capital buffers; capital conservation buffer and countercyclical 
buffer. Capital conservation buffer of 2.5  % is designed to ensure that banks build up 
capital buffers outside periods of stress which can be drawn down as losses are incurred. 
The countercyclical buffer range of 0 to 2.5 % which is set by national regulators aims 
to ensure that banking sector capital requirements take account of the macro-financial 
environment in which banks operate.

Based on the definition of CRAR i.e.

the following holds

(14)

Var(ζk | ζk ≤ b) = σ 2
k

[

1− β
φ(β)

�(β)
−

(

φ(β)

�(β)

)2
]

, σ 2
k =

7m
∑

t=1

(ζkt − µk)
2Pkt

+
N
∑

t=1

(ζkdt − µk)
2Pkdt

(15)max
x

RTx

CRAR = Q�Tx − TL

Q(̟1ζ1x1 + . . .+̟uζuxu +̟u+1ξu+1xu+1 + . . .+̟u+vξu+vxu+v)
≥ �

(16)

P

(

Q�Tx − TL

Q(̟1ζ1x1 + . . .+̟uζuxu +̟u+1ξu+1xu+1 + . . .+̟u+vξu+vxu+v)
≥ �

)

≥ 1− ǫ
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As the moment information (mean and variance) of the forward or year-ahead value of 
ζ corresponds to all the possible migration paths of loans credit ratings, constraint (16) 
means even with the changes in the risky assets credit ratings, the bank can still meet the 
total requirements of the third Basel Accord with greater likelihood. The chance-con-
strained model based on capital adequacy ratio (16) can be written in terms of a single 
generic constraint as

where

Proof  From the definition of CRAR i.e.

where the riskless asset weight factor is zero i.e.
∑u+v

k=u+1̟k = 0, therefore the following 
holds

which was set out to proof.� �

Proposition 1  From the mathematical formulation in the  “Notation and param-
eter description” section, under the assumption of known distribution of r as trun-
cated Gaussian distribution, for any ǫ ∈ (0, 1), constraint (17) is equivalent to 
F
−1
RG(1− ǫ)σ (ϕ(z))+ ϕ̂(z) ≤ 0.

(17)P

{

y0(x)+ y(x)T ζ ≤ 0
}

≥ 1− ǫ

y0(x) = TL− Q

u+v
∑

k=u+1

(1+ Rk)xk

y(x) = Q

u
∑

k=1

(�̟k − 1)xk

Q�Tx − TL

Q(̟1ζ1x1 + . . .+̟uζuxu +̟u+1ξu+1xu+1 + . . .+̟u+vξu+vxu+v)
≥ �

Q�Tx − TL ≥ �Q

(

u
∑

k=1

̟kζkxk

)

Q

u
∑

k=1

ζkxk + Q

u+v
∑

k=u+1

xk + Q

u+v
∑

k=u+1

Rkxk − TL− �Q

(

u
∑

k=1

̟kζkxk

)

≥ 0

− Q

u
∑

k=1

ζkxk − Q

u+v
∑

k=u+1

xk − Q

u+v
∑

k=u+1

Rkxk + TL+ �Q

(

u
∑

k=1

̟kζkxk

)

≤ 0

TL+ Q

u
∑

k=1

(�̟k − 1)ζkxk − Q

u+v
∑

k=u+1

(1+ Rk)xk ≤ 0

TL− Q

u+v
∑

k=u+1

(1+ Rk)xk + Q

u
∑

k=1

(�̟k − 1)ζkxk ≤ 0,
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Constraint based on other factors

Other constraints to control banks liquidity risk as well as other constraints coping with 
the defined goals of the bank are constructed here. We assume the set of admissible 
assets is a nonempty polyhedral set and denote it as X = {x : Bx = f ,Gx = h} where B is 
a m× n matrix, f is a m-dimensional vector, G is a p× n matrix and h is a p-dimensional 
vector. In particular, one of the constraints in the set X  is

which satisfies the requirements of the sum of all investment allocations to be 1. Other 
constraints can be constructed based on the requirement of setting up limit allocation 
ratio of the investment.

The optimization model

The asset-liability model via optimization techniques based on the capital asset to risk 
(weighted) ratio (CRAR) to guarantee banks of coping with the stipulated regulation of 
Basel III with great likelihood irrespective of changes in forward market value of assets is 
defined as

Therefore, the CRAR chance-constrained asset-liabilty optimization model based on the 
informed assumption and decision that the uncertain parameter , ζ (forward value of a 
loan) can be described by a b right truncated Gaussian distribution transforms to a trac-
table second-order cone program (SOCP), which has a solution in polynomial time, refer 
to Alizadeh and Goldfarb (2003) and Maggioni et al. (2009).

Numerical example
In this section we test the capability of CRAR chance-constrained asset-liability optimiza-
tion model on a hypothetical bank operating from Italy. Loan information are somewhat 
private information. We therefore use datasets with an informed suppositional background. 
We define and back the data used for the experiment with references and trusted sources.

Data description

From the asset structure of a bank operating from Italy, let Q the bank’s total asset amount 
be €1500000 and the bank’s total liability TL equal €1192000. The financial assets charac-
terizing financial environment on the bank are 5 loan types, a treasury bill, fixed assets 
and non-interest earning assets. We treat treasury bill, fixed assets and non-interest earn-
ing assets as riskless assets and the 5 loan types as risky assets. Table 6 shows all necessary 
information about the financial assets including investment proportions to be allocated. 

(18)

u+v
∑

k=1

xk = 1

(19)

maximize
x∈Rn

RTx

subject to F
−1
RG(1− ǫ)σ (ϕ(z))+ ϕ̂(z) ≤ 0

u+v
∑

k=1

xk = 1

x1, x2, . . . , xu+v ≥ 0
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The expected forward or year-ahead market value of loan types (13) and its variance (14) 
are estimated with consideration of all possible migration paths including default.

Interest rate (R) for individual loans are set to lending interest rates for Italy quoted 
by World Bank in 2013 as a reference point. The treasury bill rate of 0.8% for Italy in 
2013 was also provided by World Bank and risk weights are based on the standardized 
approach (credit risk) of Basel Accord. The recovery rates for loan types are set accord-
ing to their collateral status shown in Table 2.

Suppose the correlation coefficent of loans is between 10% and 30%, with the aid of 
Table 11.2 in Gupton et al.’s (1997) CreditMetrics technical document we consider the 
correlations among loan borrowers as shown Table 5.

The CRAR chance constraint optimization model

In this section we present the CRAR chance constraint optimization model. In order 
to fully understand the model, mathematical computations are made in that regard to 
obtain a tractable linear SOCP problem.

Table 5  Asset correlations among loans

Risky assets ζ1 ζ2 ζ3 ζ4 ζ5

ζ1 1 0.15 0.1 0.1 0.1

ζ2 0.15 1 0.2 0.15 0.1

ζ3 0.1 0.2 1 0.2 0.1

ζ4 0.1 0.15 0.2 1 0.25

ζ5 0.1 0.1 0.1 0.25 1

Table 6  Asset Structure of an Italian Bank

Assets Collateral  
status

Interest  
rate (%)

Recovery 
rate (%)

Risk  
weights (%)

Mean Variance Allocation

(ζ1) 3 year 
AAA com-
mercial and 
industrial 
loan

Inventory or 
account 
receivables

4.98 56.66 20 0.9143 0.0196 0.0010

(ζ2) 5 year AA 
agriculture 
and farm 
loan

Land, equip-
ment, crops, 
livestock etc

5.71 56.66 50 0.8696 0.0347 0.1664

(ζ3) 2 year BBB 
personal 
loan

Unsecured 6.51 37.98 75 0.9247 0.0233 0.1121

(ζ4) 3 year B 
education 
loan

House, land etc 5.87 56.66 75 0.6215 0.0929 0.4192

(ζ5) 4 year A 
vehicle loan

Savings account 
or car itself

5.14 56.66 75 0.8451 0.0360 0.2912

1 year treasury 
bill

Not applicable 0.8 100 0 1.008 0 0.0101

Fixed assets Not applicable 0 100 0 1 0

Non-interest 
earning 
assets

Not applicable 0 100 0 1 0
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Objective function

Equation (15) is filled with entries of interest rate column of Table 6. Thus,

CRAR constraint

Bank management usually allot proportions of sum total asset amount, Q, to risk-
less assets; in this case fixed assets and non-interest earning assets, before making any 
investment. In this regard, we assume bank management allocate €480000 to fixed 
assets and €420000 to non-interest earning assets.Therefore, we denote total amount 
for investment in loans (ζ ) and treasury bill (ξ1) as A = €600000. We employ capital to 
risk (weighted) assets ratio (CRAR) proposed by Basel III as the stipulated regulation 
requirement. The minimum total capital requirement is 8  %. Basel III introduced two 
additional capital buffers; capital conservation buffer of 2.5 % and countercyclical buffer 
of 0 to 2.5 %. For the purpose of this study, we assume a total capital requirement ratio, 
� , of 11 % and a safety factor of 0.95. The constraint based on CRAR is

where

Equation (21) is equivalent to

where

and

(20)
maximize

x
0.0498x1 + 0.0571x2 + 0.0651x3 + 0.0587x4 + 0.0514x5 + 0.0080x6

(21)P

(

A(ζTx + ξ1x6)+ 900000− 1192000

A(0.2ζ1x1 + 0.5ζ2x2 + . . .+ 0.75ζ5x5)
≥ 0.11

)

≥ 0.95

(22)P

{

y0(x)+ y(x)T ζ ≤ 0
}

≥ 0.95

y0(x) = 1192000− 600000 (1+ 0.0080)x6 − 480000− 420000

y(x)T = 600000((0.11× 0.2− 1)x1 + (0.11× 0.5− 1)x2 + . . .+ (0.11× 0.75− 1)x5)

(23)1.4639
√
z̃Ŵz̃ + r̂T z̃ ≤ 0

z̃ =















292000− 604800x6
−586800x1
−567000x2
−550500x3
−550500x4
−550500x5















Ŵ =

























0 0 0 0 0 0

0 0.0196 0.0039 0.0021 0.0043 0.0027

0 0.0039 0.0347 0.0057 0.0085 0.0035

0 0.0021 0.0057 0.0232 0.0093 0.0029

0 0.0043 0.0085 0.0093 0.0929 0.0145

0 0.0027 0.0035 0.0029 0.0145 0.0360

























r̂T = [1 0.9143 0.8696 0.9247 0.6215 0.8451]
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Constraint based on other factors

With requirements of investment allocations summing up to one, the constraint below 
holds.

From an investment principle, we set up a constraint of nonnegativity with respect to 
loan allocations as

Assuming bank management places an allocation limit ratio of 0.01 on treasury bill as a 
result of its riskless property, then

The chance-constrained optimization model is converted into a tractable linear SOCP 
by combining equations (20) and (23–26).

Results and conclusion
The modified CreditMetrics method described earlier was coded in Matlab(R2015a). All 
computations were performed on a MacBook Pro (Intel(R) Core(TM) i7-3615QM CPU 
@ 2.30GHz, 16GB RAM).

Column 8 of Table 6 displays entries of the optimal weights of loans and treasury bill. 
The 3-year AAA Commercial and Industrial Loan allocation value of 0.0010 is the least 
amongst the optimal investment allocation values. This may be attributed to its smaller 
risk weight and interest rate. We observe that an increment in the total liability leads to 
higher allocation to the treasury bill and vice versa. This is due to the model guarding 
against loss at the expense of a higher interest. The optimal investment portfolio interest 
income is 0.0565 which is obtained by computations made by CVX package via Matlab 
(R2015a).

To further understand the results of the optimization model, we explore CRAR chance 
constraint with the utilization of optimal investment allocation ratios and worst credit 
migration path values of loans. The expected values of year-ahead market value of loans 
under worst case scenario are assigned to ζ, the optimal allocation proportions to x and 
ξ1 equals 1.008.

Using the loan values under the worst-credit migration path from Table 7, the CRAR 
value of 0.0860 is reported. We take this approach for the purpose of testing the model 
under worst-case scenario of default. The value of CRAR even under worst case scenario 
confirms the bank is guaranteed of coping with Basel III minimum total requirement of 
0.08 with great likelihood of 95%.

The paper presented a chance-constraint optimization model that guarantees a bank, 
with treasury bills, fixed assets, non-interest earning assets and loans, to cope with capi-
tal requirements of Basel III with a probability of 95%, whichever the future value of 
assets will be. The findings of this research work explicitly disclose that the total propor-
tion of CRAR’s lower than Basel III minimum capital requirement is less than the risk 

(24)
6

∑

k=1

xk = 1

(25)x1, . . . , x5 ≥ 0

(26)x6 ≥ 0.01
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probability of 5  %. Therefore, the chance-constrained CRAR optimization model does 
guarantee banks of meeting capital requirements of Basel III with greater likelihood of 
95 % irrespective of changes in forward market value of assets.
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Appendix
In this “Appendix” we provide details and pseudocodes of the numerical procedure 
described in “CreditMetrics approach” section.

The first step of our experiment is represented by the simulation of non-default and 
default paths. The general procedure for implementation are as follows:

Step A Simulation of all non-default and default paths for maturity period m.
In this step all non-default and default paths are generated for maturity M = 1, . . . ,m 

years. The output for every M in a non-default path is a matrix of size 7m ×M where rows 
correspond to a path and columns indicate credit rating at the end of the year. All the m 
default path matrices are stored in a cell array of length m. The output for every M in a 
default path is a matrix of size 7(m−1) ×M. But unlike non default paths, for default paths 
with maturity m the possible paths are all paths in all matrices from M = 1, . . . ,m. The 
indexing scheme of AAA → 1,AA → 2,A → 3,BBB → 4,BB → 5,B → 6,CCC → 7 
and D → 8 is used.

The pseudocode is as follows:

	1a.	 set the maturity period M = 1;
	2a.	 initialize a zero matrix of size 7M ×M;
	3a.	 convert decimal number W = 0 to base 7 of length M and store it in the matrix row 

R = 1;
	4a.	 set W = W + 1 and R = R+ 1;
	5a.	 if W < 7m, repeat steps 3a and 4a ;
	6a.	 add 1 to all the elements in the matrix;
	7a.	 store the resultant matrix in cell array migN {M}, the non-default migration path;

Table 7  Expected value of year-ahead market value of loans under worst case scenario

Loan type Worst-credit migration path Value

3 Year AAA commercial and industrial loan AAA → CCC → CCC → D 0.5214

5 Year AA agriculture and farm loan AA → CCC → CCC → CCC → CCC → D 0.5296

2 Year BBB personal loan BBB → D 0.3798

3 Year B education loan B → CCC → CCC → D 0.5380

4 Year A vehicle loan AAA → CCC → CCC → CCC → D 0.5171



Page 18 of 20Atta Mills et al. SpringerPlus  (2016) 5:500 

	8a.	 store 8 in the 1× 1 default path matrix (direct default in first year);
	9a.	 add it to cell array migD{M}, default migration path;
	10a.	 get the matrix from migN {M − 1};
	11a.	 append the matrix with a column of 8’s and add to migD{M};
	12a.	 set M = M + 1;
	13a.	 if M < m, repeat steps 2a to 13a;

Step B Calculating discount factors.
This step precomputes and stores discount factors for all transition probabilities for 

m = 1, . . . , 5. The procedure runs as follows:

1b.  load forward rates data from Table 3;
2b.  append a column of 1s in dFactor first column i.e. dFactor{1} = ones(7, 1);
3b.  for every M = 1, . . . ,m and for every path for both migD and migN, calculate dis-

count factors using the recurrent relation;
4b.  store them in the cell arrays dFD as discount factors for default paths and dFN as 

discount factors for non-default paths respectively;

Step C Calculating ζkt and Pkt for non-default paths.
This step computes forward value of a unit capital invested in kth loan with a non-

default credit rating migration path t and its associated migration probability.

1c.	 for every loan k=1,...,K and for every migration path t = 1, . . . ,T , repeat the fol-
lowing;

2c.	  load discount factors obtained by step B (dFN);
3c.	  load interest rates deduced from Table 6, Column 3;
4c.	  calculate forward value ζkt using Eq. (9);
5c.  load migration path possibilities obtained from Step A;
6c.	  calculate Pkt using Eq. (11) for non-default migration path;
7c.  compute ζkt · Pkt for non-default migration path;

Step D Calculating ζktd and Pkdt for default paths.
This step computes forward value of a unit capital invested in kth loan with a default 

credit rating migration path dt and its associated migration probability.

1d.  for every loan k=1,...,K and for every migration path t = 1, . . . ,T , repeat the fol-
lowing;

2d.  load discount factors obtained by step B (dFD);
3d.  load recovery rates deduced from Table 2;
4d.  calculate forward value ζkdt using Eq. (9);
5d.  load migration path possibilities obtained from Step A;
6d.  calculate Pkdt using Eq. (12) for default migration path;
7d.  compute ζkdt · Pkdt for default migration path;
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Step E Estimating E(ζk | ζk ≤ b) and Var(ζk | ζk ≤ b)

This step estimates expected forward loan value and variance of unit capital invested 
in kth loan. The steps consist of:

1e.	  for every loan k = 1,...,K, repeat the following;
2e.	  sum all Pkt · ζkt to get µk;
3e.	  compute σ 2

k  using the computed µk as shown in Eq. (14);
4e.	  use the above information to compute expected forward loan value E(ζk | ζk ≤ b) 

and variance of unit capital Var(ζk | ζk ≤ b) from equations (12) and (13) respec-
tively;
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