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Background
The theory of continuous domains, due to its strong background in computer science, 
general topology and logic has been extensively studied by people from various areas 
(see Abramsky and Jung 1994; Gierz et al. 1980, 2003). Since many models may not be 
dcpos, an important direction in the study of continuous domains is to extend the theory 
of continuous domains to that of posets as much as possible (see Huang et al. 2009; Law-
son and Xu 2004; Mislove 1999; Markowsky 1981; Mao and Xu 2006; Venugopalan 1990; 
Zhang 1993; Zhang and Xu 2015). It has turned out to be very fruitful for many cat-
egorical and topological developments generalizing the theory of continuous domains, 
but it is still rather restrictive, taking into consideration only the case of existing a join. 
Furthermore, it fails to be completion-invariant, that is, the normal completion of a con-
tinuous poset is not always a continuous lattice, which means some useful information 
of subsets whose joins do not exist has been thrown away in some sense. In 1981, Erné 
introduced the concept of s2-continuous posets in terms of the cut operator instead of 
joins. The notion of s2-continuity admits to generalize most important characterizations 
of continuity from dcpos to arbitrary posets and has the advantage that not even the 
existence of directed joins has to be required. As a generalization of s2-continuity, the 
concept of s2-quasicontinuity was introduced by Zhang and Xu (2015), their basic idea is 
to generalize the way below relation between the points to the case of sets. It was proved 
that s2-quasicontinuous posets equipped with the weak Scott topologies are precisely 
the hypercontinuous lattices.
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Various kinds of convergent classes in posets were studied in Gierz et al. (2003), Zhao 
and Zhao (2005), Zhou and Zhao (2007), Wang and Zhao (2013), Zhao and Li (2006), 
Zhou and Li (2013), Chen and Kou (2014). By different convergence, not only are many 
notions of continuity characterized, but also they make order and topology across each 
other. In Gierz et  al. (2003), the concept of S-convergence for dcpos was introduced 
by Scott to characterize continuous domains. It was proved that for a dcpo, the S-con-
vergence is topological if and only if it is a continuous domain. In this paper, making 
a slight modification of S-convergence, we generalize the concept of S-convergence to 
the setting of arbitrary poset by means of the cut operator instead of joins. It is proved 
that the S-convergence in a poset is topological if and only if the poset is s2-continuous. 
Although Erné investigated the S-convergence through filter, we would give a satisfac-
tory sufficient and necessary condition for the S-convergence to be topological by the 
net, which is more simple and direct than the filter. In order to characterize the s2-quasi-
continuity we shall also consider another type of GS-convergence in a poset, and get the 
desired result that the GS-convergence in a poset is topological if and only if the poset is 
s2-quasicontinuous.

Preliminaries 
Let P be a partially ordered set (poset, for short). We put P(<ω) = {F ⊆ P : F is finite } . 
For all x ∈ P, A ⊆ P, define ↓ x = {y ∈ P : y ≤ x} and ↓ A = {x ∈ P : x ≤ a for some 
a ∈ A}; ↑ x and ↑ A are defined dually. A↑ and A↓ denote the sets of all upper and lower 
bounds of A, respectively. A cut operator δ is defined by Aδ = (A↑)↓ for every A ⊆ P. 
Notice that whenever A has a join (supremum) then x ∈ Aδ means x ≤ ∨A.

For a poset P, a subset U of P is called Scott open if (i) U =↑ U , and (ii) if D is a 
directed set of P and ∨D ∈ U whenever ∨D exists, then there is some d ∈ D with d ∈ U  . 
It is easy to see that all the Scott open subsets of P form a topology, which we shall call 
the Scott topology, denoted by σ(P).

Let P be a poset. We order the collection of nonempty subsets of P by G ≤ H if 
↑ H ⊆↑ G. We say that a nonempty family of sets is directed if given F1, F2 in the family, 
there exists F in the family such that F1, F2 ≤ F , i.e., F ⊆↑ F1∩ ↑ F2. For nonempty sub-
sets F and G of P, we say F approximates G if for every directed subset D ⊆ P, whenever 
∨D exists, ∨D ∈↑ G implies d ∈↑ F  for some d ∈ D. A dcpo P is called a quasicontinu-
ous domain if for all x ∈ P, ↑ x is the directed (with respect to reverse inclusion) inter-
section of sets of the form ↑ F , where F approximates {x} and F is finite. In particular, a 
poset P is called a continuous poset if for all x ∈ P, x is the directed supremum of sets of 
the form y, where {y} approximates {x}.

Definition 1 (Erné 1981) Let P be a poset.

(1)   For any x, y ∈ P, we say that x is way below y, written x ≪ y if for all directed sets 
D ⊆ P with y ∈ Dδ, there exists d ∈ D such that x ≤ d. The set {y ∈ P : y ≪ x} will 
be denoted by ⇓ x and {y ∈ P : x ≪ y} denoted by ⇑ x.

(2)   P is called s2-continuous if for all x ∈ P, x ∈ (⇓ x)δ and ⇓ x is directed.

 Indeed, we have x = ∨ ⇓ x iff x ∈ (⇓ x)δ by ⇓ x ⊆↓ x.
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Let us note that an s2-continuous poset is continuous, but the converse may not be 
true:

Example 1 (Example 1.7 (1) in Erné 1981) Consider the Euclidean plane R× R under 
the usual order. It is a continuous poset, but it is not s2-continuous, because every lower 
half-plane

is a directed lower set with Eδ
a = R× R, while 

⋂
{Ea : a ∈ R} = ∅, hence ≪ is empty.

The following lemma shows that the s2-continuous poset has the interpolation 
property.

Lemma 1 (Erné 1981) Let P be an s2-continuous poset and x, y ∈ P. If x ≪ y, then there 
is some z ∈ P such that x ≪ z ≪ y.

Definition 2 (Erné 1981, 2009) Let P be a poset. A subset U ⊆ P is called weak Scott 
open if it satisfies

(1)  U =↑ U ;
(2)  For all directed sets D ⊆ P, Dδ ∩ U �= ∅ implies D ∩U �= ∅.
The collection of all weak Scott open subsets of P forms a topology, it will be called the 

weak Scott topology of P and will be denoted by σ2(P).

Remark 1 σ2(P) is always coarser than σ(P), and both topologies coincide on dcpos.

Example 2 (Example 2.5 in Erné 1981) Consider three disjoint countable sets 
A = {an : n ∈ N0},B = {bn : n ∈ N0},C = {cn : n ∈ N}, and the order ≤ on 
P = A ∪ B ∪ C is defined as follows:

↓ a0 = {a0} ∪ B,
↓ an = {bm : m < n}(n ∈ N, n �= 2),
↓ a2 = {b0, b1} ∪ C,
↓ bn = {bn}(n ∈ N0),
↓ cn = {cm : m ≤ n}(n ∈ N),
x ≤ y ⇔ x ∈↓ y.

Then ↑ b0 is open in σ(P) but not in σ2(P) since C = {cn : n ∈ N} is a directed lower 
set with b0 ∈ Cδ∩ ↑ b0 �= ∅ while C∩ ↑ b0 = ∅. Hence in this example, we have σ2(P) is 
proper contained in σ(P).

Definition 3 (Zhang and Xu 2015) Let P be a poset and G, H ⊆ P, we say that 
G is way below H and write G ≪ H if for all directed sets D ⊆ P, ↑ H ∩ Dδ �= ∅ 
implies ↑ G ∩ D �= ∅. We write G ≪ x for G ≪ {x} and y ≪ H for {y} ≪ H . The set 
{x ∈ P : F ≪ x} will be denoted ⇑ F .

Ea = {(x, y) ∈ R× R : y ≤ a}
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Definition 4 (Zhang and Xu 2015) Let P be a poset. P is called s2-quasicon-
tinuous if for each x ∈ P, w(x) = {F ⊆ P : F ∈ P(<ω) and F ≪ x} is directed and 
↑ x =

⋂
{↑ F : F ∈ w(x) }.

Obviously, the s2-continuous is s2-quasicontinuous, but the converse may not be true.

Example 3 (Zhang and Xu 2015) Let P = {a} ∪ {an : n ∈ N}. The partial order on P is 
defined by setting an < an+1 for all n ∈ N, and a1 < a. Then P is an s2-quasicontinuous 
poset which is not s2-continuous.

The following theorem shows that the s2-quasicontinuous poset has the interpolation 
property.

Theorem 1 (Zhang and Xu 2015) Let P be an s2-quasicontinuous poset and K ∈ P(<ω), 
H ⊆ P. If H ≪ K , then there exists a finite set F such that H ≪ F ≪ K .

Lemma 2 (Zhang and Xu 2015) Let F  be a directed family of nonempty finite sets in a 
poset. If G ≪ x and 

⋂
F∈F ↑ F ⊆↑ x, then F ⊆↑ G for some F ∈ F .

Lemma 3 (Zhang and Xu 2015) Let P be an s2-quasicontinuous poset.

(1)  For any nonempty set H in P, ⇑ H = intσ2(P) ↑ H .
(2)   A subset U of P is weak Scott open iff for each x ∈ U there exists a finite F ≪ x such 

that ↑ F ⊆ U . The sets {⇑ F : F ∈ P(<ω)} form a basis for the weak Scott topology 
σ2(P).

The following lemma is well-known Rudin Lemma.

Lemma 4 (Gierz et al. 2003) Let F  be a directed family of nonempty finite subsets of a 
poset P. Then there exists a directed set D ⊆

⋃
F∈F F  such that D ∩ F �= ∅ for all F ∈ F .

S‑Convergence in s2‑continuous posets 
In this section, the concept of S-convergence in a poset is introduced. It is proved that 
the poset P is s2-continuous if and only if the S-convergence in P is topological.

Definition 5 Let P be a poset and (xj)j∈J a net in P.

(1)   A point y ∈ P is called an eventual lower bound of a net (xj)j∈J in P, if there exists 
k ∈ J  such that y ≤ xj for all j ≥ k;

(2)   A point x ∈ P is called an S-limit of the net (xj)j∈J if there exists some directed set 
D of eventual lower bounds of a net (xj)j∈J such that x ∈ Dδ. We also say (xj)j∈J S 
converges to x and write x ≡Slim xj.

Let S denote the class of those pairs ((xj)j∈J , x) with x ≡Slim xj, then O(S) = {U ⊆ P : 
whenever ((xj)j∈J , x) ∈ S and x ∈ U , then eventually xj ∈ U} is a topology.
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Remark 2 For dcpos the preceding definition of S-limit is equivalent to the standard 
one (Gierz et al. 2003, Definition II-1.1) (as in a dcpo, x ∈ Dδ means x ∈↓ ∨D).

Lemma 5 Let P be a poset, then O(S) = σ2(P).

Proof First, suppose that U ∈ O(S). To prove U =↑ U , assume that u ∈ U  and 
u ≤ x. Then u ≤ x ≡S lim x with the constant net (x) with value x. So by the defini-
tion ((x),u) ∈ S. Since we have u ∈ U ∈ O(S), we conclude from the definition of 
O(S) that the net (x) must be eventually in U. This means x ∈ U . In order to show that 
Dδ ∩ U �= ∅ ⇒ U ∩ D �= ∅ for each directed set D ⊆ P, let x ∈ Dδ ∩ U �= ∅ . Consider 
the net (xd)d∈D with xd = d. Now since ((xd)d∈D, x) ∈ S, we conclude that d = xd is 
eventually in U; whence D ∩U �= ∅.

Conversely, suppose that U ∈ σ2(P). For any ((xj)j∈J , x) ∈ S with x ∈ U , by the defini-
tion of S,we have x ∈ Dδ for some directed set D of eventual lower bounds of the net 
(xj)j∈J. Now x ∈ Dδ ∩ U , and then u ∈ D for some u ∈ U  by the definition of σ2(P). By 
definition u ≤ xj for all k ≤ j for some k ∈ J . By U =↑ U , xj ∈ U  holds eventually. Hence 
U ∈ O(S). �

Lemma 6 Let P be an s2-continuous poset. Then for any x ∈ P, ⇑ x ∈ σ2(P).

Proof It follows from Lemma 1. �

Lemma 7 Let P be a poset and y ∈ intσ2(P) ↑ x. Then x ≪ y, where intσ2(P) ↑ x denotes 
the interior of ↑ x with respect to the weak Scott topology σ2(P).

Proof Let y ∈ intσ2(P) ↑ x. For any directed set D with y ∈ Dδ, we have 
Dδ ∩ intσ2(P) ↑ x �= ∅, and whence intσ2(P) ↑ x ∩ D �= ∅. Thus there is 
d ∈ intσ2(P) ↑ x ∩ D. Now we have x ≤ d and d ∈ D. Therefore x ≪ y.

Proposition 1 Let P be an s2-continuous poset. Then x ≡S lim xj if and only if the net 
(xj)j∈J converges to the element x with respect to the weak Scott topology σ2(P). That is, the 
S-convergence is topological.

Proof The necessity follows from Lemma 5. Now suppose that the net (xj)j∈J con-
verges to an element x with respect to the weak Scott topology. For all y ∈⇓ x, we have 
x ∈⇑ y ∈ σ2(P) by Lemma 6. Thus there is k ∈ J  such that xj ∈⇑ y for all j ≥ k. Since P 
is s2-continuous, x ∈ (⇓ x)δ and ⇓ x is directed. Hence we have ((xj)j∈J , x) ∈ S, that is, 
x ≡Slim xj. �

Proposition 2 Let P be a poset. If the S-convergence is topological, then P is  
s2-continuous.

Proof By Lemma 5, the topology induced by S-convergence is the weak Scott topol-
ogy. So if the S-convergence is topological, then we must have x ≡Slim xj if and only 
if the net (xj)j∈J converges to the element x in the weak Scott topology. For any x ∈ P, 
let J = {(U , n, a) ∈ N (x)× N× P : a ∈ U}, where N(x) consists of all weak Scott open 

�
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sets containing x, and define an order on J to be the lexicographic order on the first two 
coordinates, i.e., (U ,m, a) ≤ (V , n, b) if and only if V is proper subset of U or U = V  and 
m ≤ n. Put xj = a for each j = (U ,m, a) ∈ J . Then it is not difficult to check that the 
net (xj)j∈J converges to x with respect to the weak Scott topology, and hence x ≡Slim xj. 
Thus there is a directed set D of eventual lower bounds of the net (xj)j∈J such that x ∈ Dδ . 
If d ∈ D, then there is k = (U ,m, a) ∈ J  such that (V , n, b) = j ≥ k implies d ≤ xj = b . 
Specially we have (U ,m+ 1, b) ≥ (U ,m, a) = k for all b ∈ U . Therefore x ∈ U ⊆↑ d. It 
follows that D ⊆↓ x and x ∈ intσ2(P) ↑ d. By Lemma 7 d ≪ x, and then D ⊆⇓ x. Thus 
x ∈ Dδ ⊆ (⇓ x)δ. Obviously, ⇓ x is directed. Hence P is s2-continuous. �

From Propositions 1 and 2, we immediately have:

Theorem 2 Let P be a poset. Then the following conditions are equivalent:

(1)  P is s2-continuous;
(2)   The S-convergence in P is topological for the weak Scott topology, that is, for all 

x ∈ P and all nets (xj)j∈J in P, x ≡Slim xj if and only if (xj)j∈J converges to the ele-
ment x with respect to the weak Scott topology.

Corollary 1 (Gierz et  al. 2003) Let P be a dcpo. Then the following conditions are 
equivalent:

(1)  P is a domain;
(2)   The S-convergence in P is topological for the Scott topology, that is, for all x ∈ P and 

all nets (xj)j∈J in P, x ≡S lim xj if and only if (xj)j∈J converges to the element x with 
respect to the Scott topology.

GS‑Convergence in s2‑quasicontinuous posets 
In this section, the concept of GS-convergence in a poset is introduced. It is proved that 
the poset P is s2-quasicontinuous if and only if the GS-convergence in P is topological.

Definition 6 Let P be a poset and (xj)j∈J a net in P. F ⊆ P is called a quasi-eventual 
lower bound of a net (xj)j∈J in P, if F is finite and there exists k ∈ J  such that xj ∈↑ F  for 
all j ≥ k.

Obviously, an eventual lower bound is the quasi-eventual lower bound.

Definition 7 Let P be a poset and (xj)j∈J a net in P. x is called a GS-limit of the net 
(xj)j∈J if there exists a directed family F = {F ⊆ P : F  is finite} of quasi-eventual lower 
bounds of the net (xj)j∈J in P such that 

⋂
F∈F ↑ F ⊆↑ x. We also say (xj)j∈J quasi S con-

verges to x and write x ≡GSlim xj.

Lemma 8 An S-limit of the net (xj)j∈J must be a GS-limit of the net (xj)j∈J.

Proof Let P be a poset and (xj)j∈J a net with x ≡Slim xj. Then there is a directed set 
D of eventual lower bounds of the net (xj)j∈J with x ∈ Dδ. Let F = {{d} : d ∈ D} , 
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then F  is a directed family of quasi-eventual lower bounds of the net (xj)j∈J and 
D↑ =

⋂
{↑ d : d ∈ D} ⊆↑ x. Thus x ≡GSlim xj. �

Remark 3 A GS-limit of the net (xj)j∈J may not be an S-limit of the net (xj)j∈J.

Example 4 Let P = N ∪ {⊤, z}, where N denotes the set of all natural numbers. The 
order ≤ on P is defined as follows:

(1)  ∀x ∈ P, x ≤ ⊤;
(2)  ∀x, y ∈ N, x ≤ y if x is less than or equal to y according to the usual order on 

natural numbers.

Then P is s2-quasicontinuous but not s2-continuous. Also for all n ∈ N, {z, n} ≪ z and 
↑ z =

⋂
n∈N ↑ {z, n}. Let x2n = n, x2n+1 = z, then (xj)j∈N is a net and {z, n} is a quasi-

eventual lower bound of it. Hence z ≡GSlim xn. It is not difficult to check that z ≤ xn 
does not hold eventually. Thus z is not an S-limit of the net (xn)n∈N.
Proposition 3 Let F  be a directed family of nonempty finite sets in a poset P. If 
x ∈ U ∈ σ2(P) and 

⋂
F∈F ↑ F ⊆↑ x, then F ⊆ U  for some F ∈ F .

Proof Suppose not, then the collection {F\U : F ∈ F} is a directed fam-
ily of nonempty finite sets. By Lemma 4, there is some directed set 
D ⊆

⋃
{F\U : F ∈ F} such that D ∩ (F\U) �= ∅ for all F ∈ F . Then 

D↑ =
⋂

d∈D ↑ d ⊆
⋂

F∈F ↑ (F\U) ⊆
⋂

F∈F ↑ F ⊆↑ x. Thus x ∈ (D↑)↓ = Dδ. Now we 
have x ∈ Dδ ∩ U �= ∅, and hence D ∩U �= ∅ by the definition of the weak Scott open set, 
that is, there is some d ∈ D with d ∈ U. But this contradicts d ∈ F \U for some F ∈ F . �

Let GS denote the class of those pairs ((xj)j∈J , x) with x ≡GSlim xj, then 
O(GS) = {U ⊆ P : whenever ((xj)j∈J , x) ∈ GS and x ∈ U , then eventually xj ∈ U} is also 
a topology.

Though S-limit and GS-limit of the net (xj)j∈J are different, they may generate the 
same topology.

Proposition 4 Let P be a poset, then O(GS) = O(S) = σ2(P).

Proof By Lemma 5, we only need to show that O(GS) = σ2(P). By Lemma 8, we have 
S ⊆ GS, so O(GS) ⊆ σ2(P). Conversely, let U ∈ σ2(P) and ((xj)j∈J , x) ∈ GS with x ∈ U . 
Since x ≡GSlim xj, there is a directed family F = {F ⊆ P : F  is finite} of quasi-eventual 
lower bounds of a net (xj)j∈J in P such that 

⋂
F∈F ↑ F ⊆↑ x. By Proposition 3 there is 

F ∈ F  such that ↑ F ⊆ U . Notice that F is a quasi-eventual lower bound of a net (xj)j∈J, 
there is some j0 ∈ J  such that xj ∈↑ F ⊆ U for all j ≥ j0. Thus U ∈ O(GS). �

Now we derive the GS-convergence in the s2-quasicontinuous poset is topological.

Proposition 5 Let P be an s2-quasicontinuous poset. Then x ≡GS lim xj if and only if 
the net (xj)j∈J converges to the element x with respect to the weak Scott topology.
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Proof The necessity follows from Proposition 4. Now suppose that the net (xj)j∈J 
converges to an element x with respect to the weak Scott topology. Since P is s2-qua-
sicontinuous, there exists a directed family w(x) = {F ⊆ P : F ∈ P(<ω) and F ≪ x} and 
↑ x =

⋂
{↑ F : F ∈ w(x) }. For all F ∈ w(x), let UF = {y ∈ P : F ≪ y}. Then UF ∈ σ2(P) 

and x ∈ UF by Lemma 3, and hence xj ∈ UF eventually holds. Thus F is a quasi-eventual 
lower bound of the net (xj)j∈J and x ≡GSlim xj. �

The converse is also true.

Proposition 6 Let P be a poset. If the GS-convergence is topological, then P is  
s2-quasicontinuous.

Proof Suppose that the GS-convergence is topological. Then x ≡GSlim xj if and only if 
the net (xj)j∈J converges to the element x with respect to the weak Scott topology σ2(P) 
by Proposition 4.

For any x ∈ P, let J = {(U , n, a) ∈ N (x)×N× P : a ∈ U}, where N(x) consists of all 
weak Scott open sets containing x, and define an order on J to be the lexicographic order 
on the first two coordinates. That is, (U ,m, a) ≤ (V , n, b) if and only if V is proper subset 
of U or U = V  and m ≤ n. Obviously, J is directed. Let xj = a for all j = (U ,m, a) ∈ J  . 
Then it is not difficult to check that the net (xj)j∈J converges to the element x with 
respect to the weak Scott topology, and hence x ≡GSlim xj. Thus it concludes that there 
is a directed family F = {F ⊆ P : F  is finite} of quasi-eventual lower bounds of the 
net (xj)j∈J in P such that 

⋂
F∈F ↑ F ⊆↑ x. Now we prove that (1) for all F ∈ F , F ≪ x; 

(2)
⋂

F∈F ↑ F =↑ x.

(1)   Let D ⊆ P be directed with x ∈ Dδ. Since F is a quasi-eventual lower bound of the 
net (xj)j∈J, there is j0 = (U ,m, a) ∈ J  such that xj ∈↑ F  for all j = (V , n, b) > j0.  
Notice x ∈ U , so D ∩U �= ∅. Pick d ∈ D ∩ U . Set i = (U ,m+ 1, d), then 
i > (U ,m, a) = j0. Thus d = xi ∈↑ F , that is, F ≪ x.

(2)    We only need to show that ↑ x ⊆
⋂

F∈F ↑ F . Suppose not, then there exists 
y ≥ x but y /∈

⋂
F∈F ↑ F , that is, there exists F ∈ F  with y /∈↑ F . And then 

↑ F ⊆ P\ ↓ x . Again since F is a quasi-eventual lower bound of the net (xj)j∈J, there 
exists j0 = (U ,m, a) ∈ J  such that xj ∈↑ F  for all j = (V , n, b) > j0. Now we have 
x ∈ U . Set i = (U ,m+ 1, x), then i > (U ,m, x) = j0. Thus x = xi ∈↑ F ⊆ P\ ↓ x, 
a contradiction. �

From Propositions 5 and 6 we have:

Theorem 3 Let P be a poset. Then the following conditions are equivalent:

(1)  P is s2-quasicontinuous;
(2)    The GS-convergence in P is topological for the weak Scott topology σ2(P), that is, for 

all x ∈ P and all nets (xj)j∈J in P, x ≡GS lim xj if and only if (xj)j∈J converges to x 
with respect to the weak Scott topology.

Corollary 2 (Zhou and Li 2013) Let P be a dcpo. Then the following conditions are 
equivalent:
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(1)  P is a quasicontinuous domain;
(2)   S∗-convergence in P is topological for the Scott topology σ(P), that is, for all x ∈ P 

and all nets (xj)j∈J in P, (xj)j∈J S∗ converges to x if and only if (xj)j∈J converges to x 
with respect to the Scott topology.

Conclusions
In this paper, we present one way to generalize S-convergence and GS-convergence 
of nets for arbitrary posets by use of the cut operator instead of joins and come to the 
main conclusions are: (1) A poset P is s2-continuous if and only if the S-convergence 
in P is topological; (2) P is s2-quasicontinuous if and only if the GS-convergence in P is 
topological.
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