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Introduction and preliminaries
Fixed point theory plays one of the important roles in nonlinear analysis. It has been 
applied in physical sciences, Computing sciences and Engineering. In 1922, Stefan 
Banach proved a famous fixed point theorem for contractive mappings in complete met-
ric spaces. Later, Czerwik (1993, 1998) has come up with b-metrics which generalized 
usual metric spaces. After his contribution, many results were presented in β-general-
ized weak contractive multifunctions and b-metric spaces (Alikhani et al. 2013; Boric-
eanu 2009; Mehemet and Kiziltunc 2013). The following definitions will be needed in the 
sequel:

Definition 1 Nadler (1969) Let X and Y be nonempty sets. T is said to be multi-valued 
mapping from X to Y if T is a function for X to the power set of Y. we denote a multi-
valued map by:

Definition 2 Nadler (1969) A point of x0 ∈ X is said to be a fixed point of the multi-
valued mapping T if x0 ∈ Tx0.

Example 3 Joseph (2013) Every single valued mapping can be viewed as a multi-valued 
mapping. Let f :X → Y  be a single valued mapping. Define T :X → 2Y  by Tx = {f (x)} . 
Note that T is a multi-valued mapping iff for each x ∈ X ,TX ⊆ Y . Unless otherwise 
stated we always assume Tx is non-empty for each x, y ∈ X.

Definition 4 Banach (1922) Led (X, d) be a metric space. A map T :X → X is called 
contraction if there exists 0 ≤ � < 1 such that d(Tx,Ty) ≤ �d(x, y), for all x, y ∈ X.

T :X → 2Y .
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Definition 5 Nadler (1969) Let (X, d) be a metric space. We define the Hausdorff met-
ric on CB(X) induced by d. That is

for all A,B ∈ CB(X), where CB(X) denotes the family of all nonempty closed and 
bounded subsets of X and d(x,B) = inf{d(x, b) : b ∈ B}, for all x ∈ X.

Definition 6 Nadler (1969) Let (X, d) be a metric space. A map T :X → CB(X) is said 
to be multi valued contraction if there exists 0 ≤ � < 1 such that H(Tx,Ty) ≤ �d(x, y), 
for all x, y ∈ X

Lemma 7 Nadler (1969) If A,B ∈ CB(X) and a ∈ A, then for each ǫ > 0, there exists 
b ∈ B such that d(a, b) ≤ H(A,B)+ ǫ.

Definition 8 Aydi et al. (2012) Let X be a nonempty set and let s ≥ 1 be a given real 
number. A function d:X × X → R

+ is called a b-metric provide that, for all x, y, z ∈ X,

1. d(x, y) = 0 if and only if x = y

2. d(x, y) = d(y, x)

3. d(x, z) ≤ s[d(x, y)+ d(y, z)].

A pair(X, d) is called a b-metric space.
Example 9 Boriceanu (2009) The space lp(0 < p < 1), lp = {(xn:

∑∞

n=1
|xn|

p < ∞}, 
together with the function d:lp × lp → R

+.

Example 10 Boriceanu (2009) The space Lp(0 < p < 1) for all real func-
tion x(t), t ∈ [0, 1] such that 

∫ 1
0 |x(t)|pdt < ∞, is b-metric space if we take 

d(x, y) = (
∫ 1
0 |x(t)− y(t)|pdt)

1
p.

Example 11 Aydi et  al. (2012) Let X = {0, 1, 2} and d(2, 0) = d(0, 2) = m ≥ 2 , 
d(0, 1) = d(1, 2) = d(0, 1) = d(2, 1) = 1 and d(0, 0) = d(1, 1) = d(2, 2) = 0. Then 
d(x, y) ≤ m

2 [d(x, z)+ d(z, y)] for all x, y, z ∈ X. If m > 2,the ordinary triangle inequality 
does not hold.

Definition 12 Boriceanu (2009) Let (X, d) be a b-metric space. Then a sequence (xn) in 
X is called Cauchy sequence if and only if for all ǫ > 0 there exists n(ǫ) ∈ N such that for 
each m, n ≥ n(ǫ) we have d(xn, xm) < ǫ.

Definition 13 Boriceanu (2009) Let be a (X, d) b-metric space. Then a sequence (xn) 
in X is called convergent sequence if and only if there exists x ∈ X such that for all ǫ > 0 
there exists n(ǫ) ∈ N such that for all n ≥ n(ǫ) we have d(xn, x) < ǫ. In this case we write 
lim
n→∞

xn = x

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)}
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Our first result is the following theorem.

Main results

Definition 14 Let (X, d) be a b-metric space with constant s ≥ 1. A map T :X → CB(X) 
is said to be multi valued generalized contraction if

for all x, y ∈ X and ai ≥ 0, i = 1, 2, 3, . . . 6 with a1 + a2 + 2sa3 + a4 + a5 + a6 < 1.

Theorem  15 Let (X,  d) be a complete b-metric space with constant s ≥ 1. Let 
T : X → CB(X) be a multi valued generalized contraction mapping. Then T has a unique 
fixed point.

Proof Fix any x ∈ X. Define x0 = x and let x1 ∈ Tx0. By Lemma 7, we may choose 
x2 ∈ Tx1 such that d(x1, x2) ≤ H(Tx0,Tx1)+ (a1 + sa3 + a5 + a6).

Now,

By Lemma 7, there exist x3 ∈ Tx2 such that d(x2, x3) ≤ d(Tx1, x2)+
(a1+sa3+a5+a6)

2

1−(a2+sa3)
.

Now,

(1)

H(Tx,Ty) ≤ a1d(x,Tx)+ a2d(y,Ty)+ a3d(x,Ty)+ a4d(y,Tx)+ a5d(x, y)

+ a6
d(x,Tx)(1+ d(x,Tx))

1+ d(x, y)
,

d(x1, x2) ≤ H(Tx0,Tx1)+ (a1 + sa3 + a5 + a6)

≤ a1d(x0,Tx0)+ a2d(x1,Tx1)+ a3d(x0,Tx1)+ a4d(x1,Tx0)

+ a5d(x0, x1)+ a6
d(x0,Tx0)(1+ d(x0,Tx0))

1+ d(x0, x1)
+ (a1 + sa3 + a5 + a6)

d(x1, x2) ≤ a1d(x0, x1)+ a2d(x1, x2)+ a3d(x0, x2)+ a4d(x1, x1)+ a5d(x0, x1)

+ a6d(x0, x1)+ (a1 + sa3 + a5 + a6)

≤ (a1 + a5 + a6)d(x0, x1)+ a2d(x1, x2)+ a3s[d(x0, x1)+ d(x1, x2)]

+ (a1 + sa3 + a5 + a6)

≤ (a1 + sa3 + a5 + a6)d(x0, x1)+ a2d(x1, x2)+ sa3d(x1, x2)

+ (a1 + sa3 + a5 + a6)

d(x1, x2) ≤
(a1 + sa3 + a5 + a6)

1− (a2 + sa3)
d(x0, x1)+

(a1 + sa3 + a5 + a6)

1− (a2 + sa3)

d(x2, x3) ≤H(Tx1, x2)+
(a1 + sa3 + a5 + a6)

2

1− (a2 + sa3)

≤a1d(x1,Tx1)+ a2d(x1,Tx2)+ a3d(x1,Tx2)

+ a4d(x2,Tx1)+ a5d(x1, x2)+ a6d(x1, x2)+
(a1 + sa3 + a5 + a6)

2

1− (a2 + sa3)

≤
(a1 + sa3 + a5 + a6)

1− (a2 + sa3)
d(x1, x2)+

(a1 + sa3 + a5 + a6)
2

(1− (a2 + sa3))2

d(x2, x3) ≤
( (a1 + sa3 + a5 + a6)

1− (a2 + sa3)

)2
d(x0, x1)+ 2

[ (a1 + sa3 + a5 + a6)

(1− (a2 + sa3))

]2



Page 4 of 8Maria Joseph et al. SpringerPlus  (2016) 5:217 

Continuing this process, we obtain by induction a sequence {xn} such that 
xn ∈ Txn−1, xn+1 ∈ Txn such that

for all n ∈ N and let k =
(a1+sa3+a5+a6)

1−(a2+sa3)

Since k < 1,
∑

kn and 
∑

nkn have same radius of convergence. Then, {xn} is a Cauchy 
sequence. But (X, d) is a complete b-metric space, it follows that {xn}∞n=0 is convergent.

Now,

Using (1), we obtain, 

The above inequality is true unless d(u,Tu) = 0. Thus, Tu = u.
Now we show that u is the unique fixed point of T. Assume that v is another fixed 

point of T. Then we have Tv = v and

we obtain, d(u, v) ≤ 2sd(u, v). This implies that u = v. This completes the proof. �

Theorem  16 Let (X , d) be a complete b-metric space with constant � ≥ 1. Let 
T , S:X → CB(X) be a multi valued mapping satisfies the condition:

d(xn, xn+1) ≤
(a1 + sa3 + a5 + a6)

1− (a2 + sa3)
d(xn−1, xn)+

[ (a1 + sa3 + a5 + a6)

(1− (a2 + sa3))

]n

d(xn, xn+1) ≤ kd(xn−1, xn)+ kn

≤ k
[

kd(xn−2, xn−1)+ kn−1
]

+ kn

= k2d(xn−2, xn−1)+ kkn−1 + kn

...

d(xn, xn+1) ≤ knd(x0, x1)+ nkn

u = lim
n→∞

xn.

d(u,Tu) ≤ s
[

d(u, xn+1)+ d(xn+1,Tu)
]

d(u,Tu) ≤ s
[

d(u, xn+1)+ d(Txn,Tu)
]

d(u,Tu) ≤ s[d(u, xn+1)] + s

[

a1d(xn,Txn)+ a2d(u,Tu)+ a3d(xn,Tu)

+ a4d(u,Txn)+ a5d(xn,u)+ a6d(xn,u)

]

.

As n → ∞,

d(u,Tu) ≤ s

[

a2d(u,Tu)+ a3d(u,Tu)

]

(

1− (a2s + a3s)
)

d(u,Tu) ≤ 0.

d(u, v) = d(Tu,Tv)

≤ s
[

d(u,Tv)+ d(v,Tu)
]

H(Tx, Sy) ≤ a1d(x,Tx)+ a2d(y, Sy)+ a3d(x, Sy)+ a4d(y,Tx)+ a5d(x, y),
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for all x,y ∈ X and ai ≥ 0, i = 1, 2, . . . 5, with 
(a1 + a2)(�+ 1)+ (a3 + a4)

(

�
2 + �

)

+ 2�a5 < 2, a1 + a2 + a3 + a4 + a5 < 1. Then T 
and S have a unique common fixed point.

Proof Fix any x ∈ X . Define x0 = x and let x1 ∈ Tx0, x2 ∈ Sx such that 
x2n+1 = Tx2n, x2n+2 = Sx2n+1, By Lemma 7, we may choose x2 ∈ Sx1 such that 
d(x1, x2) ≤ H(Tx0, Sx1)+ (a1 + a5 + �a3)

On the other hand and by symmetry,we have

Adding inequalities (2) and (3) , we obtain

Similarly, it can be shown that, there exists x3 ∈ Tx2 such that

Continuing this process,we obtain by induction a sequence {xn} such that 
x2n+1 ∈ Tx2n, x2n+2 ∈ Sx2n+1 such that

(2)

d(x1, x2) ≤ a1d(x0,Tx0)+ a2d(x1, Sx1)+ a3d(x0, Sx1)+ a4d(x1,Tx0)

+ a5d(x0, x1)+ (a1 + a5 + �a3)

= a1d(x0, x1)+ a2d(x1, x2)+ a3d(x0, x2)

+ a4d(x0, x1)+ a5d(x0, x1)+ (a1 + a5 + �a3)

≤ a1d(x0, x1)+ a2d(x1, x2)+ a3�[d(x0, x1)+ d(x1, x2)]

+ a5d(x0, x1)+ (a1 + a5 + �a3)

d(x1, x2) ≤ (a1 + �a3 + a5)d(x0, x1)+ (a2 + �a3)d(x1, x2)+ (a1 + a5 + �a3)

d(x1, x2) ≤
(a1 + a5 + �a3)

1− (a2 + �a3)
d(x0, x1)+

(a1 + a5 + �a3)

1− (a2 + �a3)

(3)

d(x2, x1) = d(Sx1,Tx0)

≤ H(Sx1,Tx0)+ (a2 + a5 + �a4)

≤ a1d(x1, Sx1)+ a2d(x0,Tx0)+ a3d(x1,Tx0)+ a4d(x0, Sx1)

+ a5d(x1, x0)+ (a2 + a5 + �a4)

= a1d(x1, x2)+ a2d(x0, x1)+ a3d(x1, x1)+ a4d(x0, x2)

+ a5d(x0, x1)+ (a2 + a5 + �a4)

≤ a1d(x1, x2)+ a2d(x0, x1)+ a4[d(x0, x1)+ d(x1, x2)]+ a5d(x0, x1)

+ (a2 + a5 + �a4)

= (a2 + a5 + �a4)d(x0, x1)+ (a1 + �a4)d(x2, x1)(a2 + a5 + �a4)

d(x2, x1) ≤
(a2 + a5 + �a4)

1− (a1 + �a4)
d(x0, x1)+

(a2 + a5 + �a4)

1− (a1 + �a4)

d(x1, x2) ≤
a1 + a2 + Sa3 + Sa4 + 2a5

2− (a1 + a2 + Sa3 + Sa4)
d(x0, x1)+

(a1 + a2 + Sa3 + Sa4 + 2a5)

2− (a1 + a2 + Sa3 + Sa4)

where, k =
(a1 + a2 + �a3 + �a4 + 2a5

2− (a1 + a2 + �a3 + �a4)
<

1

�
.

d(x3, x2) ≤ H(Tx2, Sx1)+

(

a1 + a2 + �a3 + �a4 + 2a5

2− (a1 + a2 + �a3 + �a4)

)2

≤ k2d(x1, x0)+ 2k2
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Also,

From (4) and (5)

Therefore,

Since 0 < k < 1,
∑

kn and 
∑

nkn have same radius of convergence. Then, {xn} is a 
Cauchy sequence. Since (X , d) is complete,there exists z ∈ X such that xn → z.

We shall prove that z is a common fixed point of T and S.

Using (7) in (6) and letting as n → ∞, we obtain,

(4)

d(x2n+1, x2n+2) ≤ Hd(Tx2n, Sx2n+1)+ (a1 + a5 + �a3)
2n+1

≤ a1d(x2n,Tx2n)+ a2d(x2n+1, Sx2n+1)+ a3d(x2n, Sx2n+1)

+ a4d(x2n+1,Tx2n)+ a5d(x2n, x2n+1)+ (a1 + a5 + �a3)
2n+1

d(x2n+1, x2n+2) ≤
(a1 + a5 + �a3)

1− (a2 + �a3)
d(x2n, x2n+2)+

(a1 + a5 + �a3)
2n+1

(1− (a2�a3))
2n+1

(5)d(x2n+2, x2n+1) ≤
(a2 + a5 + �a4)

1− (a1 + �a4)
d(x2n+1, x2n)+

(a2 + a5 + �a4)
2n+1

(1− (a2�a3))
2n+1

d(x2n+1, x2n+2) ≤ kd(x2n+1, x2n)+ k2n+1

d(xn, xn+1) ≤
a1 + a2 + �a3 + �a4 + 2a5

2− (a1 + a2 + �a3 + �a4)
d(xn−1, xn)

+

(

a1 + a2 + �a3 + �a4 + 2a5

2− (a1 + a2 + �a3 + �a4)

)n

for all n ∈ N and let k =
(a1 + a2 + �a3 + �a4 + 2a5

2− (a1 + a2 + �a3 + �a4)

d(xn, xn+1) ≤ kd(xn−1, xn)+ kn

≤ k
(

d(xn−2, xn−1)+ kn−1
)

+ kn

= k2d(xn−2, xn−1)+ 2kn

≤ · · · · · · · · ·

≤ knd(x0, x1)+ nkn.

(6)

d(z,Tz) ≤ �[d(z, x2n+1)+ d(x2n+1,Tz)]

≤ �[d(z, x2n+1)+H(x2n+1,Tz)]

d(z, Sz) ≤ �[d(z, x2n+1)+ d(x2n+1, Sz)]

≤ �[d(z, x2n+1)+H(x2n, Sz)]

(7)
H(x2n, Sz) ≤ a1d(x2n,Tx2n)+ a2d(z, Sz)+ a3d(x2n, Sz)+ a4d(z,Tx2n)

+ a5d(x2n, z)

d(z, Sz) ≤ �d(z, z)+ �[a1d(z, z)+ a2d(z, Sz)+ a3d(z, Sz)+ a4d(z, z)+ a5d(z, z)]

= �[a2d(z, Sz)+ a3d(z, Sz)]

≤ �(a2 + a3)d(z, Sz)
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[1− �(a2 + a3)]d(z, Sz) ≤ 0.

1− �(a2 + a3) ≤ 0 and S(z)is closed. Thus, S(z) = z.
Similarly, T (z) = z.
We show that z is the unique fixed point of S and T. Now,

Since [1− (a3 + a4 + a5)] > 0, d(z, v) = 0. Hence, S and T have a unique common fixed 
point. �

Example 17 Let X = R. We define d : X × X → X by d(x, y) = (|x − y|), for all 
x, y ∈ X . Then (X, d) is a complete b− metric space.

Define T : X → CB(X) by Tx =
x

10
, for all x, y ∈ X . Then,

Therefore, 0 ∈ X is the unique fixed point of T.

Conclusion
Many authors have contributed some fixed point results for a self mappings in b-metric 
spaces. In this paper, we have proved the existence and uniqueness of fixed point results 
for a multivalued mappings in b-metric spaces. Our contraction mappings also general-
ize various known contractions like Hardy Roger contraction in the current literature.
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