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Background
Consider the following partially linear model

where y′is are observations, x′i = (xi1, . . . , xip) and x1, . . . , xn are known p-dimensional 
with p ≤ n. t ′i s are values of an extra univariate variable such as the time at which the 
observation is made, β = (β1, . . . ,βp)

′ is an unknown parameter vector. f (·) is an 
unknown smooth function, and ε′is are random errors supposed to be i.i.d. N (0, σ 2) 
distributed.

Use matrix vector notation, model (1) can be written as follows:

where y = (y1, . . . , yn)
′, X ′ = (x1, . . . , xn), f = [f (t1), . . . , f (tn)]

′ and ε = (ε1, . . . , εn)
′.

Since partially linear model has parametric and nonparametric components, and it is 
more flexible than linear model, many authors have been studied it, such as Ahn and 
Powell (1993), Wang et al. (2007).

In model (2), Yatchew (1997) mainly studied the estimation of the linear component 
and used differencing to eliminate bias induced from the presence of the nonparametric 

(1)yi = x′iβ + f (ti)+ εi, i = 1, . . . , n

(2)y = Xβ + f + ε
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component. Wang et al (2007) presented higher-order differences for optimal efficiency 
in estimating the linear part by using a special class of difference sequences.

In this article we will use the ridge regression concept that was presented by Hoerl 
and Kennard (1970) to overcome the multicollinearity in regression problem. Mul-
ticollinearity is denoted as the existence of nearly linear dependency among column 
vectors of the design matrix X in the linear model y = Xβ + ǫ, where y is a n× 1vec-
tor of observed responses, X is the observed matrix of independent variables of dimen-
sion n× p, assumed to have full rank p, β is an unknown parameter, ǫ is an error vector 
with E(ǫ) = 0,E(ǫǫ′) = σ 2Ip. Multicollinearity may lead to wide confidence intervals for 
individual parameters may produce estimates with wrong signs, etc.

The condition number is a measure of the presence of multicollinearity. The condi-
tion number of the matrix X present some information about the existence of multicol-
linearity, however it does not illustrate the structure of the linear dependency among 
the column vectors X1,X2, . . . ,Xn. The best way of illustrating the existence and struc-
ture of multicollinearity is to see the eigenvalues of X ′X. If X ′X is ill-conditioned with 
a large condition number a ridge regression estimator can be used to estimate β [see 
e.g., Swamy et al. (1978); Sarkar (1992); Shi (2001); Zhong and Yang (2007); Zhang and 
Yang (2007); Tabakan and Akdeniz (2010); Akdeniz and Tabakan (2009); Roozbeh et al. 
(2010); Duran and Akdeniz (2012); Duran et al. (2012); Hu (2005) and Hu et al. (2015)]. 
In this paper, we will examine a biased estimation techniques to be followed when the 
matrix X ′X appears to be ill-conditioned in the partial linear model. We suppose that 
the condition number of the parameteric component is large explain that a biased esti-
mation procedure is desirable.

The rest of the paper is organized as follows. In section  “The model and differ-
encing-based estimator”, the model and differencing methodology are given. Sec-
tion  “Generalized difference-based ridge estimator” contains the definition of the 
generalized difference-based ridge estimator and some comparison results are given in 
section “MSEM-superiority of the generalized difference-based ridge estimator β̂GRD(k) 
over the the generalized restricted difference-based estimator β̂GRD”. The results from 
section “MSEM-superiority of the generalized difference-based ridge estimator β̂GRD(k) 
over the the generalized restricted difference-based estimator β̂GRD” are applied to a 
simulation study in section  “Exemplary simulation” and a numerical example is given 
to illustrate the theoretical result in section  “A numerical example”. Some conclusion 
remarks are given in section “Conclusions”.

The model and differencing‑based estimator
In this section we use a difference-based method to estimate the linear regression coef-
ficient vector β. This method has been presented to remove the nonparametric compo-
nent in the partially linear model by many authors (Yatchew 1997, 2000, 2003). Consider 
the following partially linear model

where f is an unknown smooth function and has a bounded first derivative.

(3)y = Xβ + f + ε
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Now we present the differencing method. Let d = (d0, . . . , dm) be a m+ 1 vector, 
where m is the order of differencing and d0, . . . , dm are differencing weights satisfying 
the conditions

Now, we denote the (n−m)× n differencing matrix D whose elements satisfy Eq. (4) as 
follows:

This and related matrices are given, for example, in Yatchew (2003). Then we can use the 
differencing matrix to model (3), and this leads to direct estimation of the parametric 
effect. In particular, take

Since the data have been reordered so that the X ′s are close, the application of the dif-
ferencing matrix D in model (6) can remove the nonparametric effect in large samples 
(Yatchew 2003). This ingores the presence of Df(t). Thus, we may write Eq. (6) as

or

where ỹ = Dy, X̃ = DX and ǫ̃ = Dǫ.
So, we can see that ǫ̃  is a n−m vector of disturbances distributed with 

E(ǫ̃) = 0 and E(ǫ̃ǫ̃′) = σ 2DD′.
For arbitrary differencing coefficients satisfying Eq. (8), Yatchew (1997) defines a sim-

ple differencing estimator of the parameter β in a partial linear model

Hence, differencing allows one to perform inferences on β as if there were no nonpara-
metric component f() in the model (3) (Yatchew 2003). Once β is estimated, a variety of 
nonparametric techniques could be applied to estimate f() as if β were known.

In order to account for the parameter β in Eq. (3), we propose the modified estimator 
of σ 2, defined as

(4)

m∑

j=0

dj = 0,

m∑

j=0

d2j = 1

(5)D =




d0 d1 . . . dm 0 0 . . . 0

0 d0 d1 . . . dm 0 . . . 0

. . . . . .

. . . . . .

. . . . . .

0 0 . . . d1 . . . dm 0 0

0 0 . . . d0 d1 . . . dm 0

0 0 . . . 0 d0 d1 . . . dm




(6)Dy = DXβ + Df (t)+ Dǫ

(7)Dy
.= DXβ + Dǫ

(8)ỹ
.= X̃β + ǫ̃

(9)β̂ = (X̃ ′X̃)−1X̃ ′ỹ

(10)σ̂ 2 = ỹ′(I − P)ỹ

tr(D′(I − P)D)
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where P is the projection matrix and defined as

Generalized difference‑based ridge estimator
In this section we discuss the following partially linear model:

with E(ε) = 0 and E(ε′ε) = σ 2V . So using the method we proposed in section  “The 
model and differencing-based estimator”, we have ε̃ = Dε is a (n−m)-vector of distur-
bances distributed with

where VD = DVD′ �= In−m is a known (n−m)× (n−m) symmetric positive definite 
matrix.

It is well known that adopting the linear model (12), the unbiased estimator of β is the 
following generalized difference-based estimator given by

and the modified estimator σ 2,

where P is the projection matrix and defined as

It is observed from Eq. (14) that the properties of the generalized difference-based esti-
mator of β depends heavily on the characteristics of the information matrix CD. If the 
CD matrix is ill-conditioned, then the β̂GD leads to large sampling variances. Moreover, 
some of the regression coefficients may be statistically insignificant with wrong sign and 
meaningful statistical inference becomes difficult for the researcher. As a remedy, we 
consider the linear constraint

for a given q × p matrix R with rank q < p. Subject to the linear restriction (17), the gen-
eralized restricted difference-based estimator is given by

Define W = C−1
D − C−1

D R′(RC−1
D R′)−1RC−1

D , we obtain

Now we propose a generalized difference-based ridge estimator, which is defined as

(11)P = X̃(X̃ ′X̃)−1X̃ ′

(12)y = Xβ + f + ε

(13)E(ε̃) = 0 and E(ε̃′ε̃) = σ 2DVD′ = σ 2VD

(14)β̂GD = C−1
D X̃ ′V−1

D ỹ, CD = X̃ ′V−1
D X̃

(15)σ̂ 2 = ỹ′V−1/2
D (I − P)V

−1/2
D ỹ

tr(D′(I − P)D)

(16)P = V
−1/2
D X̃(X̃ ′V−1

D X̃)−1X̃ ′V−1/2
D

(17)Rβ = 0

(18)β̂GRD = β̂GD − C−1
D R′(RC−1

D R′)−1Rβ̂GD

(19)β̂GRD = WX̃ ′V−1
D ỹ

(20)β̂GRD(k) = (kW + I)−1β̂GRD
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where W = C−1
D − C−1

D R′(RC−1
D R′)−1RC−1

D  and k ≥ 0.
Then, it is easy to see that β̂GRD and β̂GRD(k) are restricted with respect to Rβ = 0. It is 

also clear that for k = 0, we obtain β̂GRD(0) = β̂GRD.

MSEM‑superiority of the generalized difference‑based ridge estimator β̂GRD(k) 
over the the generalized restricted difference‑based estimator β̂GRD
In this section, our aim is to examine the difference of the mean squared error matri-
ces (MSEM) of two estimators β̂GRD(k) and β̂GRD. Let b∗ be an estimator of β in model 
Y = Xβ + ǫ. The MSEM of b∗ is defined as

If we denote the covariance matrix of an estimator b∗ by V (b∗), then (21) is equivalent to

where bias(b∗) = E(b∗)− β. The scalar valued mean square error MSE is given by 
MSE(b∗,β) = E

[
(b∗ − β)′(b∗ − β)

]
= tr [MSEM(b∗,β)].

Using Eq. (20), we obtain

and

Thus,

Then, the difference Var(β̂GRD)− Var(β̂GRD(k)) can be expressed as

Since W is an nonnegative definite matrix [see Shi (2001)], we can conclude that 
Var(β̂GRD)− Var(β̂GRD(k)) is an nonnegative definite matrix.

It is of interest to know under which conditions β̂GRD(k) is better than β̂GRD. For this, 
we investigate the difference � = MSEM(β̂GRD,β)− MSEM(β̂GRD(k),β), when � is 
nonnegative definite matrix, β̂GRD(k) is preferred to β̂GRD. Thus, for the MSE, of the gen-
eralized difference-based ridge estimator β̂GRD(k), from (23) and (24), we obtain

Since β̂GRD is unbiased estimator for β, we have

Now from (27) and (28), we may write the difference 
� = MSEM(β̂GRD,β)− MSEM(β̂GRD(k),β)

(21)MSEM(b∗,β) = E
[
(b∗ − β)(b∗ − β)′

]

(22)MSEM(b∗,β) = Var(b∗)+
(
bias(b∗)

)
(bias(b∗))′

(23)E(β̂GRD(k)) = −k(kW + I)−1Wβ

(24)Var(β̂GRD(k)) = σ 2(kW + I)−1W (kW + I)−1

(25)Var(β̂GRD) = σ 2W

(26)Var(β̂GRD)− Var(β̂GRD(k)) = σ 2(kW + I)−1(k2W 3 + 2kW 2)(kW + I)−1

(27)

MSEM(β̂GRD(k),β) = Var(β̂GRD(k))+ (bias(β̂GRD(k))(bias(β̂GRD(k)))
′

= σ 2(kW + I)−1W (kW + I)−1

+ k2(kW + I)−1Wββ ′W (kW + I)−1

(28)MSEM(β̂GRD,β) = Var(β̂GRD) = σ 2W
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Then, by (29), � = MSEM(β̂GRD,β)− MSEM(β̂GRD(k),β) ≥ 0 if and only if 
σ 2k2W 3 + 2σ 2kW 2 − k2Wββ ′W ≥ 0.

Then using Theorem (Farebrother 1976), we can conclude that if 
k > 0, β ′

(
W + 2

k
I
)−1

β ≤ σ 2, then β̂GRD(k) is preferred to β̂GRD.

Theorem 4.1  Consider the two estimator β̂GRD and β̂GRD(k) of β. Then the biased esti-
mator β̂GRD(k) is MSEM-superior over the β̂GRD if

is satisfied.

Exemplary simulation
In this section, we study the MSE of the proposed estimator. Our sampling experiment 
consists of different combinations of k and n. In this paper, we simulate the response 
from the following model:

where i = 1, . . . , n, ǫ ∼ (0, σ 2V ) which the elements of V is vij = (0.1)|i−j| and σ = 0.1 , 
f (ti) =

√
ti(1− ti) sin

2.1π
ti+0.05

 that is called Doppler function for ti = (i − 0.5)/n and 
for i = 1, . . . , n, the explanatory variables are generated by the following equation (Liu 
2003):

where zij and zi(p+1) are independent standard normal pseudo-random numbers and γ is 
specified so that the correlation between any two explanatory variables is given by γ 2. In 
this paper, we consider n = 200 and p = 4.

In this article we use a third-order differencing coefficients d0 = 0.8502, d1 = −0.3832 , 
d2 = −0.2809, d3 = −0.1942 in which m = 3. Now, we define the (200− 3)× 200 differ-
encing matrix as follows:

(29)

� = MSEM (β̂GRD,β)− MSEM (β̂GRD(k),β)

= σ 2W − σ 2(kW + I)−1W (kW + I)−1

− k2(kW + I)−1Wββ ′W (kW + I)−1

= (kW + I)−1(σ 2k2W 3 + 2σ 2kW 2 − k2Wββ ′W )(kW + I)−1

(30)β ′
(
W + 2

k
I

)−1

β ≤ σ 2

(31)y = x1iβ1 + x2iβ2 + x3iβ3 + x4iβ4 + f (ti)+ ǫi

xij = (1− γ 2)zij + γ zi(p+1), i = 1, . . . , n, j = 1, . . . , p

(32)D =




d0 d1 . . . dm 0 0 . . . 0

0 d0 d1 . . . dm 0 . . . 0

. . . . . .

. . . . . .

. . . . . .

0 0 . . . d1 . . . dm 0 0

0 0 . . . d0 d1 . . . dm 0

0 0 . . . 0 d0 d1 . . . dm



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For the linear restriction (17), the R is given as follows:

Let GRD define the generalized restricted difference-based estimator and GRDR define 
the generalized restricted difference-based ridge estimator and the estimated MSE of 
GRD and GRDR are given in Figs. 1, 2 and 3.

From Figs.  1 and  3, we see that we k is smaller, the new estimator is better than the 
generalized difference-based estimator in the mean squared error sense. And with the 
increase of the mulitillinearity, the new estimator is perform well.

A numerical example
In this section, we consider a numerical example to explain the performance of theo-
retical result presented in “MSEM-superiority of the generalized difference-based ridge 
estimator β̂GRD(k) over the the generalized restricted difference-based estimator β̂GRD”  
section. The data was generated by Yatchew (2003), later discussed by Tabakan and 
Akdeniz (2010) and came from the survey of 81 municipal electricity distribution in 
Ontario, Canada, in 1993.

As we all know, the partial linear model is a simple semiparametric generalization of 
the Cobb–Douglas model. We consider a simple variant of the Cobb–Douglas model for 
the cost of distributing electricity

(33)R = (1,−2,−2,−2)
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Fig. 1  The estimated MSE of GRD and GRDR for γ = 0.8
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Fig. 2  The estimated MSE of GRD and GRDR for γ = 0.85
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for tc stands for the log of total cost per customer, cust denotes the log of the number 
of customers, wage defines the log of wage rate, pcap stands for the log price of capital, 
puc denotes a dummy variable for the public utility commissions that deliver additional 
services and may benefit from economy of scope, kWh defines the log of kilowatt hours 
per customer, life denotes the log of the remaining life of distribution assets, lf shows the 
log of the load factor and kmwire presents the log of kilometers of distribution wire per 
customer (Tabakan and Akdeniz 2010). It is easy to see that (34) contains both nonpara-
metric effect and parametric effects.

Since V is seldom known, the estimation of V can be used. Trenkler (1984) gave some 
estimates of V as

where the terms of the error vector are from the MA(1) process:

where µi ∼ N (0, σ 2
µ), E(µiµj) = 0, i �= j, σ 2 = σ 2

µ(1+ ρ2).
For the linear restriction (17), the R is given as follows:

In this section, we study ρ = 0.3, σ 2
µ = 0.1 and consider matrix V is estimated by (35). It 

is easy to compute the condition number is 2365.158, suggesting the presence of severe 
collinearity.

(34)

tc = f (cust)+ β1wage + β2pcap+ β3puc + β4kWh+ β5life + β6lf + β7kmwire + ǫ

(35)V = 1

ρ2 + 1




1+ ρ2 ρ 0 . . . 0 0

ρ 1+ ρ2 ρ . . . 0 0

. . . . . . . .

. . . . . . . .

. . . . . . . .

0 0 0 . . . 1+ ρ2 ρ

0 0 0 . . . ρ 1+ ρ2




ǫi = µi + ρµi−1, |ρ| < 1, i = 1, 2, . . . , n

(36)R = (1,−2,−2,−2,−2,−2,−2)
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Fig. 3  The estimated MSE of GRD and GRDR for γ = 0.9
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In this section we use the method which Hoerl and Kennard proposed to estimate k. 
Then we get MSE(β̂GRD(k),β) = 0.323 and MSE(β̂GRD,β) = 0.597, that is to say the 
new estimator is better than restricted difference-based estimator.

Now we see theorem 21

That is to say our numerical example satisfied with theorem 4.1. This also means our 
method is meaningful in practice.

Conclusions
In this article, we present a new generalized difference-based ridge estimator that can 
be applied in the presence of multicollinearity in a partial linear model. Its MSE is com-
pared analytically with the generalized restricted difference-based estimator. It is shown 
that for small values of the ridge parameter k, the new estimator is MSEM-superior to 
the generalized restricted difference-based estimator over an interval depending on the 
design points and the unknown parameter.
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