A characterization of $L_{3}(4)$ by its character degree graph and order

Shitian Liu* and Yunxia Xie

*Correspondence:
s.t.liu@yandex.com

School of Science, Sichuan University of Science and Engineering, Xueyuan Street, Zigong 643000 Sichuan, People's Republic of China

Abstract

Let G be a finite group. The character degree graph $\Gamma(G)$ of G is the graph whose vertices are the prime divisors of character degrees of G and two vertices p and q are joined by an edge if $p q$ divides the character degree of G. Let $L_{n}(q)$ be the projective special linear group of degree n over a finite field of order q. Khosravi et. al. have shown that the simple groups $L_{2}\left(p^{2}\right)$, and $L_{2}(p)$ where $p \in\{7,8,11,13,17,19\}$ are characterizable by the degree graphs and their orders. In this paper, we give a characterization of $L_{3}(4)$ by using the character degree graph and its order.

Keywords: Character degree graph, Projective special linear group, Simple group, Character degree

Mathematics Subject Classification: 20C15, 20C33

Background

In this paper all groups are finite. Let G be a finite group and let $\operatorname{Irr}(G)$ be the set of all irreducible characters of G. Denote by $\operatorname{cd}(G)=\{\chi(1): \chi \in \operatorname{Irr}(G)\}$ the set of character degrees of G.
The graph $\Gamma(G)$ is called character degree graph whose vertices are the prime divisors of character degrees of the group G and two vertices p and q are joined by an edge if $p q$ divides some character degree of G (Manz et al. 1988). Khosravi et al. (2015) proved that the group $L_{2}\left(p^{2}\right)$, where p is a prime, is characterizable by its character degree graph and its order. Khosravi et al. (2014) invested the influence of the character degree graph and order of the simple groups of order less than 6000, on the structure of group. Let $L_{n}(q)$ be the projective special linear group. By Theorem 3.2(1) of White (2006), we know that $\Gamma\left(L_{3}(q)\right)$, where $q>2$ is a power of a prime p, is complete if and only if q is odd and $q-1=2^{i} 3^{j}$ for some $i \geq 1, j \geq 0$; also we know that $\Gamma\left(L_{3}(4)\right)$ has neither an edge between 2 and 3 nor an edge between 2 and 7 .
We know from Khosravi et al. (2014), that the linear groups $L_{3}(2) \cong L_{2}(7)$ and $L_{3}(3)$ are characterized by the character degree graphs and their orders. As a continue of this topics, we will prove the following main theorem.

Main Theorem Let $L:=L_{3}(4)$. If G is a finite group such that $\Gamma(G)=\Gamma(L)$ and $|G|=|L|$, then $G \cong L$.

We introduce some notation here. Let S_{n} and A_{n} be the symmetric and alternating groups of degree n, respectively. Let $L_{n}(q)$ be the special linear group of degree n over finite field of order q. If $N \unlhd G$ and $\theta \in \operatorname{Irr}(N)$, then the inertia group of θ in G is $I_{G}(\theta)=\left\{g \in G \mid \theta^{g}=\theta\right\}$. If n is an integer and r is a prime divisor of n, then we write either $n_{r}=r^{a}$ or $r^{a} \| n$ if $r^{a} \mid n$ but $r^{a+1} V n$. Let G be a group and let r be a prime, then denote the set of Sylow r-subgroups G_{r} of G by $\operatorname{Syl}_{r}(G)$. If H is a characteristic subgroup of G, we write H ch G. All other notations are standard (see Conway et al. 1985).

Some preliminary results

In this section, we give some lemmas to prove the main theorem.

Lemma 1 (Isaacs 1994, Theorem 6.5) Let $A \unlhd G$ be abelian. Then χ (1) divides $|G: A|$ for all $\chi \in \operatorname{Irr}(G)$.

Lemma 2 (Isaacs 1994, Theorem 6.2, 6.8 and 11.29) Let $N \unlhd G$ and let $\chi \in \operatorname{Irr}(G)$. Let θ be an irreducible constituent of χ_{N} and suppose that $\theta_{1}, \ldots, \theta_{t}$ are distinct conjugates of θ in G. Then $\chi_{N}=e \sum_{i=1}^{t} \theta_{i}$, where $e=\left[\chi_{N}, \theta\right]$ and $t=\left|G: I_{G}(\theta)\right|$ Also $\theta(1) \mid \chi(1)$ and $\left.\frac{\chi(1)}{\theta(1)} \right\rvert\, \frac{|G|}{|N|}$.

Lemma 3 (Xu et al. 2014, Lemma 1) Let G be a non-soluble group. Then G has a normal series $1 \unlhd H \unlhd K \unlhd G$, such that K / H is a direct product of isomorphic non-abelian simple groups and $|G / K|||\operatorname{Out}(K / H)|$.

Lemma 4 (Xu et al. 2013, Lemma 2) Let G be a finite soluble group of order $p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{n}^{a_{n}}$, where $p_{1}, p_{2}, \ldots, p_{n}$ are distinct primes. If $k p_{n}+1 \vee p_{i}^{a_{i}}$ for each $i \leq n-1$ and $k>0$, then the Sylow p_{n}-subgroup is normal in G.

We also need the structure of non-abelian simple group whose largest prime divisor is less than 7 .

Lemma 5 (Zavarnitsine 2009) If S is a finite non-abelian simple group such that $\pi(S) \subseteq\{2,3,5,7\}$, then S is isomorphic to one of the following simple groups in Table 1.

Table 1 Finite non-abelian simple groups S with $\pi(S) \subseteq\{2,3,5,7\}$

\mathbf{S}	Order of \boldsymbol{S}	Out(S)	\mathbf{S}	Order of \boldsymbol{S}	Out(S)
A_{5}	$2^{2} \cdot 3 \cdot 5$	2	$L_{2}(49)$	$2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2}$	2^{2}
$L_{2}(7)$	$2^{3} \cdot 3 \cdot 7$	2	$U_{3}(5)$	$2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7$	S_{3}
A_{6}	$2^{3} \cdot 3^{2} \cdot 5$	2^{2}	A_{9}	$2^{6} \cdot 3^{4} \cdot 5 \cdot 7$	2
$L_{2}(8)$	$2^{3} \cdot 3^{2} \cdot 7$	3	J_{2}	$2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7$	2
A_{7}	$2^{3} \cdot 3^{2} \cdot 5 \cdot 7$	2	$S_{6}(2)$	$2^{9} \cdot 3^{4} \cdot 5 \cdot 7$	1
$U_{3}(3)$	$2^{5} \cdot 3^{3} \cdot 7$	2	A_{10}	$2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7$	2
A_{8}	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7$	2	$U_{4}(3)$	$2^{7} \cdot 3^{6} \cdot 5 \cdot 7$	D_{8}
$L_{3}(4)$	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7$	D_{12}	$S_{4}(7)$	$2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 7^{4}$	2
$U_{4}(2)$	$2^{6} \cdot 3^{4} \cdot 5$	2	$O_{8}^{+}(2)$	$2^{12} \cdot 3^{5} \cdot 5^{2} \cdot 7$	S_{3}

The proof of Main Theorem

In this section, we give the proof of main theorem.

The proof of Main Theorem

Proof We know from Conway et al. (1985, p. 23), that $\operatorname{cd}\left(L_{3}(4)\right)=\{1,20,35,45,63,64\}$. So the graph $\Gamma(G)$ is the graph with vertex set $\{2,3,5,7\}$ and the vertices 5 and 7 , and the vertices 2 and 7 have no edge. Therefore there is a character $\chi \in \operatorname{Irr}(G)$ with $5 \cdot 7 \mid \chi(1)$.

It is easy to prove that $O_{5}(G)=1$ and $O_{7}(G)=1$. In fact, if $O_{7}(G) \neq 1$, then $O_{7}(G)$ is a normal abelian Sylow 7 -subgroup of G of order 7 by hypotheses. Then by Lemma 1, $\chi(1)\left|\left|G: O_{7}(G)\right|\right.$ for all $\chi(1) \in \operatorname{cd}(G)$, a contradiction. Similarly we can prove that $O_{5}(G)=1$.

Suppose first that G is soluble. Let $M \neq 1$ be a minimal normal subgroup of G. Then M is an elementary abelian p-group with $p=2$ or 3 . Note that $|G|_{p}=p$ for $p=5,7$ and in $\Gamma(G)$, there is a character χ of G such that $5 \cdot 7$ divides $\chi(1)$. Then by Lemma $1, p=2$ or 3. So two cases are considered.

1. Let M be a 3-group.

Since there is a character χ with $\chi(1)=21$, then $|M|=3$. Let H / M be a Hall subgroup of G / M of order $2^{6} \cdot 5 \cdot 7$. Then $|G / M: H / M|=3$. It follows that $(G / M) /(L / M) \hookrightarrow S_{3}$, where S_{3} is the symmetric group of degree 3 and $L / M=\operatorname{Core}_{G / M}(H / M):=\bigcap_{g M \in G / M}(H / M)^{g M}$, the core of H / M in G / M. So we have $|L / M| \mid 2^{6} \cdot 5 \cdot 7$ and $Q / M \unlhd L / M$, where $Q / M \in \operatorname{Syl}_{p}(L / M)$ with $p=5$ or 7 . Hence since $L \operatorname{ch} G, Q \unlhd G$ and so $|Q|=3 \cdot p$. Therefore $O_{p}(G) \neq 1$ with $p=5$ or 7 , a contradiction.
2. Let M be a 2-group.

If $|M|=2^{6}$, then by Lemma $1, \chi(1)| | G: M \mid$, a contradiction. Hence $|M|=2^{k}$ with $1 \leq k \leq 5$. Let H / M be a Hall subgroup of order $3^{2} \cdot 5 \cdot 7$. Then $|G / M: H / M|=|G: H|=2^{k} \leq 32$.
2.1. If $1 \leq k \leq 2$, then $G / H_{G} \hookrightarrow S_{2^{k}}$ and so $7\left|\left|H_{G}\right|\right.$. Let $Q / M \in \operatorname{Syl}_{7}(H / M)$. Also $\quad\left|H_{G} / M\right|\left||H / M|=3^{2} \cdot 5 \cdot 7\right.$. If $\left.\quad\right| H_{G} / M \mid<3^{2} \cdot 5 \cdot 7$, then $Q / M \operatorname{ch} H_{G} / M \unlhd G / M$ and so $Q \unlhd G$. It follows that G_{7} is normal in G, a contradiction. Hence $\left|H_{G} / M\right|=|H / M|=3^{2} \cdot 5 \cdot 7$. By hypotheses, we can choose a character $\chi \in \operatorname{Irr}(G)$ with $\chi(1)=35$. Let $\theta \in \operatorname{Irr}(H)$ with $e=\left[\chi_{H}, \theta\right] \neq 0$. Then $35=\operatorname{et} \theta(1)$ with $t=\left|G: I_{G}(\theta)\right|$. Since the numbers e and t are divisors of $|G: H|=2^{6-k}$, then $e=t=1$ and so $\chi_{H}=\theta$ by Lemma 2. Since $\theta(1)^{2}=5 \cdot 7 \cdot 5 \cdot 7<|H|=2^{k} \cdot 3^{2} \cdot 5 \cdot 7$ and $1 \leq k \leq 2$, then $k=2$ and $|M|=4, M \subseteq H$. Let $\eta \in \operatorname{Irr}(M)$ such that $e^{\prime}=\left[\theta_{M}, \eta\right] \neq 0$. Therefore $35=e^{\prime} t^{\prime}$ with $t^{\prime}=\left|H: I_{H}(\eta)\right|$ Also we know that M has 4 linear characters and so $t^{\prime} \leq 4$. So $\left(e^{\prime}, t^{\prime}\right)=(35,1)$. It follows that $35^{2} \leq\left[\theta_{M}, \theta_{M}\right]=e^{\prime 2} t^{\prime} \leq|H: M|=3^{2} \cdot 5 \cdot 7$, a contradiction.
2.2. If $3 \leq k \leq 5$, then $M \leq H_{G} \leq H$. Therefore $\pi\left(H_{G}\right)=\{2,3\},\{2,5\},\{2,7\},\{2,3,5\}$, $\{2,3,7\},\{2,5,7\}$ or $\{2,3,5,7\}$.
2.2.1. Let $\pi\left(H_{G}\right)=\{2,3\}$.

Since there is no character χ with $6 \mid \chi(1)$ and M is abelian, then $\left|\operatorname{cd}\left(H_{G}\right)\right|=2$ and $3 \mid \chi(1)$ for some character $\chi \in \operatorname{Irr}\left(H_{G}\right)$. It folows from Isaacs (1994, Theorem 12.5), G either has an abelian normal subgroup of index 3 or 9 or is the product of a 3-group K and an abelian. If the former, $k=4$ (otherwise, the Sylow 3-subgroup is normal in $\left.H_{G}\right)$ and $|K|=3$. It means $3 \cdot 2^{2}| | H / H_{G} \mid$ and $2 \cdot 3 \in \operatorname{cd}(G)$, a contradiction. If the latter, then $H_{G}=\left(Z_{3} \rtimes Z_{3}\right) \times M$ and so $3 \in \operatorname{cd}\left(H_{G}\right)$. It follows that there is also an character χ such that $2 \cdot 3 \mid \chi(1)$, a contradiction.
2.2.2. Let $5 \in \pi\left(H_{G}\right)$.

Let $Q / M \in \operatorname{Syl}_{5}\left(H_{G} / M\right)$. Then $Q \unlhd H_{G}$ ch G and so $G_{5} \unlhd G$, a contradiction.
2.2.3. Let $7 \in \pi\left(H_{G}\right)$.

Let $Q / M \in \operatorname{Syl}_{7}\left(H_{G} / M\right)$. Then $Q \unlhd H_{G}$ ch G and so $G_{7} \unlhd G$, a contradiction.
2.2.4. Let $5,7 \in \pi\left(H_{G}\right)$.

We can rule out this case as Case 2.2.2 or Case 2.2.3.
2.2.5. $\quad H_{G}$ is a 2-group.

Then $M=H_{G}$. If G is an elementary abelian, then by Webb (1983, p. 238), $\operatorname{Aut}(G)$ is an extension of an elementary abelian p-group of rank $\frac{n^{2}(n-1)}{2}$ by a subgroup of $G L(n, p)$ (the question of what subgroups of $G L(n, p)$, the general linear group of degree n over finite field of order p, can arise in this way is still far from a solution). We know that $\frac{G}{C_{G}(M)}=\frac{N_{G}(M)}{C_{G}(M)} \lesssim \operatorname{Aut}(M)$. If $k=3$, then $5\left|\left|C_{G}(M)\right|\right.$ and the Sylow 5-subgroup G_{5} of G is also a Sylow 5-subgroup of $C_{G}(M)$. So $G_{5} \unlhd G$, a contradiction. if $k=4$ or 5 , then $7\left|\left|C_{G}(M)\right|\right.$. Similarly we have $G_{7} \unlhd G$, a contradiction.

Therefore G is insoluble and so by Lemma $3, G$ has a normal series $1 \unlhd H \unlhd K \unlhd G$, such that K / H is a direct product of isomorphic non-abelian simple groups and $|G / K|||\operatorname{Out}(K / H)|$.

We will prove that $5,7 \in \pi(K / H)$. Assume the contrary, then obviously by Kondrat'ev and Mazurov (2000, Lemma 6(d)) and Liu (2015, Lemma 2.13) apply to almost simple groups $K / H \leq G / H \leq \operatorname{Aut}(K / H)$, where K / H has a disconnected prime graph. We have that $|\operatorname{Out}(K / H)|$ is divisible by neither 5 nor 7 . If $5,7| | H \mid$, then there is a Hall $\{5,7\}$-subgroup L of H, then L is cyclic and so L is abelian. By Lemma $1, \chi(1) \| G: L \mid$, a contradiction. If 5 divides the order $|H|$ but $7 \nmid|H|$, then G_{5} is cyclic and so get a contradiction by Lemma 1. Similarly, $7 \nmid|H|$.

Therefore by Lemma 5 and considering group orders, K / H is isomorphic to one of the simple groups: A_{7}, A_{8} or $L_{3}(4)$.
If $K / H \cong A_{7}$, then $A_{7} \leq G / H \leq \operatorname{Aut}\left(A_{7}\right)$. If $G / H \cong A_{7}$, then there is an edge between the vertices 2 and 3 in $\Gamma(G)$, a contradiction since $\operatorname{cd}\left(A_{7}\right)=\{1,6,10,14,15,21,35\}$. Similarly, we can rule out when $G / H \cong S_{7}$.

If $K / H \cong L_{3}(4)$, then $L_{3}(4) \leq G / H \leq \operatorname{Aut}\left(L_{3}(4)\right)$. If $G / H \cong L_{3}(4)$, then $H=1$ and so $G \cong L_{3}(4)$. For the other cases, we rule out by considering their orders.

If $K / H \cong A_{8}$, then $A_{8} \leq G / H \leq S_{8}$. If $G / H \cong A_{8}$, then $H=1$ and so $G \cong A_{8}$. But $\Gamma\left(L_{3}(4)\right)$ has no edge between the vertices 2 and 7 , a contradiction. If $G / H \cong S_{8}$, then order consideration rules out.

So G is isomorphic to L_{3} (4).
This completes the proof.
Corollary Let G be a finite group with $\operatorname{cd}(G)=\operatorname{cd}\left(L_{3}(4)\right)$ and $|G|=\mid L_{3}(4)$, then G is isomorphic to $L_{3}(4)$.

Proof We know from Conway et al. (1985, p. 23), that $\operatorname{cd}\left(L_{3}(4)\right)=\{1,20,35,45,63,64\}$. Since G_{7} is a Sylow 7 -subgroup of G with order 7 , then $O_{7}(G)=1$. In fact, if $O_{7}(G) \neq 1$, then there is a character χ such that $\chi(1)=70$. So $\chi(1)\left|\left|G: O_{7}(G)\right|\right.$ by Lemma 1 . Similarly, $O_{5}(G)=1$.

Let G be a soluble and M be a normal minimal subgroup of G. Then M is an elementary abelian p-group. From above arguments, we have $p=2$, 3. If $p=2$, then $|M| \geq 2$ and since M is abelian, there is no character χ such that $64 \mid \chi(1)$, a contradiction. If $p=3$, then similarly, there is no character χ such that $9 \mid \chi(1)$, a contradiction.

Therefore G is insoluble and so by Lemma $5, G$ has a normal series $1 \unlhd H \unlhd K \unlhd G$, such that K / H is a direct product of isomorphic non-abelian simple groups and $|G / K|||\operatorname{Out}(K / H)|$. By Kondrat'ev and Mazurov (2000, Lemma 6(d)) and Liu (2015, Lemma 2.13), $|\operatorname{Out}(K / H)|$ is divisible by neither 5 nor 7 . Also $5,7 \mathrm{~V}|H|$ since $O_{5}(G)=1=O_{7}(G)$. Hence K / H is isomorphic to A_{7}, A_{8} or $L_{3}(4)$. If $K / H \cong A_{7}$, then $\Gamma(G)$ is complete, a contradiction since $\Gamma\left(A_{7}\right)$ is complete. If $K / H \cong L_{3}(4)$, then $G \cong L_{3}(4)$, the desired result. If $K / H \cong A_{8}$, then $G \cong A_{8}$, a contradiction since the vertices 2 and 7 are joined by an edge.

This completes the proof.

Conclusion

The projective special linear group $L_{3}(4)$ can be characterized by the character degree graph and its order. Also we get that $L_{3}(4)$ is characterized by its order and character degrees.

Authors' contributions

SL and $Y X$ contributed this paper equally. Both authors read and approved the final manuscript.

Acknowledgements

Shitian Liu was supported by the Opening Project of Sichuan Province University Key Laborstory of Bridge Non-destruction Detecting and Engineering Computing (Grant Nos: 2013 QYJ02 and 2014QYJ04); the Scientific Research Project of Sichuan University of Science and Engineering (Grant Nos: 2014RC02) and by the Department of Sichuan Province Eduction (Grant Nos: 15ZA0235 and 16ZA0256). Yunxia Xie was supported by the Scientific Research Project of Sichuan University of Science and Engineering (Grant No: 2013RC08). The authors are very grateful for the helpful suggestions of the referee.

Competing interests

The authors declare that they have no competing interests.
Received: 18 August 2015 Accepted: 12 February 2016
Published online: 01 March 2016

References

Conway JH, Curtis RT, Norton SP, Parker RA, Wilson RA (1985) Atlas of finite groups. Oxford University Press, Eynsham Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray Isaacs IM (1994) Character theory of finite groups. Dover Publications Inc, New York, p 303. Corrected reprint of the 1976 original [Academic Press, New York. MR0460423 (57 \#417)]
Khosravi B, Khosravi B, Khosravi B, Momen Z (2014) Recognition by character degree graph and order of simple groups of order less than 6000. Miskolc Math Notes 15(2):537-544

Khosravi B, Khosravi B, Khosravi B, Momen Z (2015) Recognition of the simple group PSL($2, p^{2}$) by character degree graph and order. Monatsh Math. doi:10.1007/s00605-014-0678-3
Kondrat'ev AS, Mazurov VD (2000) Recognition of alternating groups of prime degree from the orders of their elements. Sib Mat Zh 41 (2):359-369. doi:10.1007/BF02674599
Liu S (2015) OD-characterization of some alternating groups. Turk J Math 39(3):395-407. doi:10.3906/mat-1407-53
Manz O, Staszewski R, Willems W (1988) On the number of components of a graph related to character degrees. Proc Am Math Soc 103(1):31-37. doi:10.2307/2047522
Webb UM (1983) The number of stem covers of an elementary abelian p-group. Math Z 182(3):327-337. doi:10.1007/ BF01179753
White DL (2006) Degree graphs of simple linear and unitary groups. Commun Algebra 34(8):2907-2921. doi:10.1080/00927870600639419
Xu H, Chen G, Yan Y (2014) A new characterization of simple K_{3}-groups by their orders and large degrees of their irreducible characters. Commun Algebra 42(12):5374-5380. doi:10.1080/00927872.2013.842242
Xu H, Yan Y, Chen G (2013) A new characterization of Mathieu-groups by the order and one irreducible character degree. J Inequal Appl 2013-2096. doi:10.1186/1029-242X-2013-209
Zavarnitsine AV (2009) Finite simple groups with narrow prime spectrum. Sib Èlektron Mat Izv 6:1-12

Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

