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Background
Let 〈., .〉 be an inner product, ‖.‖ be the corresponding norm and H be a Hil-
bert space. The mapping T : H → H is said to be; nonexpansive, if 
∥

∥Tx − Ty
∥

∥ ≤
∥

∥x − y
∥

∥, ∀x, y ∈ H , quasi-nonexpansive, if �Tx − q� ≤ �x − q�, ∀x ∈ H 
and q ∈ Fix(T ), η-strongly monotone, if there exists a positive constant η > 0 such 
that 

〈

Tx − Ty, x − y
〉

≥ η
∥

∥x − y
∥

∥

2
, ∀x, y ∈ H , uniformly L-Lipschitzian, if there exists 

L > 0 such that 
∥

∥Tnx − Tny
∥

∥ ≤ L
∥

∥x − y
∥

∥, ∀x, y ∈ H and T is said to be strongly positive 
bounded linear operator, if there is a constant γ > 0 such that �Tx, x� ≥ γ �x�2, ∀x ∈ H , 
and also T is said to be; contraction if there exists a constant β ∈ [0, 1) such that 
∥

∥Tx − Ty
∥

∥ ≤ β
∥

∥x − y
∥

∥, ∀x, y ∈ H , strictly pseudocontraction if there exists a constant 
k ∈ [0, 1) such that

The mapping T is said to be; asymptotically strict pseudocontraction if there exists a 
constant k ∈ [0, 1) and a sequence {kn} ⊂ [1,∞) with kn → 1 as n → ∞ such that

∥

∥Tx − Ty
∥

∥

2
≤

∥

∥x − y
∥

∥

2
+ k

∥

∥(I − T )x − (I − T )y
∥

∥

2
, ∀x, y ∈ H .

∥

∥Tnx − Tny
∥

∥

2
≤ kn

∥

∥x − y
∥

∥

2
+ k

∥

∥(I − Tn)x − (I − Tn)y
∥

∥

2
, ∀n ≥ 1 and x, y ∈ H ,
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(k , {µn}, {ξn},φ)-total asymptotically strict pseudocontraction, if there exists a con-
stant k ∈ [0, 1), µn ⊂ [0,∞), ξn ⊂ [0,∞) with µn → 0 and ξn → 0 as n → ∞, and 
continuous strictly increasing function φ : [0,∞) → [0,∞) with φ(0) = 0 such  
that 

∥

∥Tnx − Tny
∥

∥

2
≤

∥

∥x − y
∥

∥

2
+ k

∥

∥(I − Tn)x − (I − Tn)y
∥

∥

2
+ µnφ(

∥

∥x − y
∥

∥)+ ξn, 
∀x, y ∈ H .

We now give an example of (k , {µn}, {ξn},φ)-total asymptotically strict pseudocon-
traction mappings.

Example 1 Let B be a unit ball in a real Hilbert space l2 and T : B → B be a mapping 
define by

where {ai} is a sequence in (0,1) such that 
∏∞

i=2(ai) =
1
2.

It was proved by Goebel and Kirk (1972) that

(i) 
∥

∥Tx − Ty
∥

∥ ≤ 2
∥

∥x − y
∥

∥;

(ii) 
∥

∥Tnx − Tny
∥

∥ ≤ 2
∏n

i=2(ai)
∥

∥x − y
∥

∥ ∀x, y ∈ B and n ≥ 2.

Now if we let k
1
2
1 = 2 such that k

1
2
n = 2

∏n
i=2(ai), for n ≥ 2, then

Similarly, if we let µn = kn − 1, ∀n ≥ 1, φ(t) = t2, ∀t ≥ 0, k ∈ [0, 1) and ξn be a non-neg-
ative real sequence such that ξn → 0, then ∀x, y ∈ B, n ≥ 1, we have

Remark 2 Note that, every nonexpansive mapping is k-strict pseudocontraction, 
k-strict pseudocontraction is asymptotically strict pseudocontraction mapping, asymp-
totically strict pseudocontraction mapping is (k , {µn}, {ξn}, φ)-total asymptotically 
strict pseudocontraction mapping.

Throughout this paper, we adopt the notations; I is the identity operator, Fix(T) is the 
fixed point set of T, VIP(C,F) is the solution set of variational inequality problem [see 
Eq.  (1)], “→” and “⇀” denote the strong and weak convergence respectively, and ωω(xn) 
denote the set of the cluster point of {xn} in the weak topology i.e., {∃xnj of {xn} such that 
xnj ⇀ x}.

Let C be a nonempty closed convex subset of H and F : C → H be a map. The vari-
ational inequality problem with respect to C and F is defined as search for x∗ ∈ C , such 
that

The problem of solving a variational inequality problem of the form (1) has been inten-
sively studied by numerous authors due to its various applications in several physical 

T : (x1, x2, x3, . . .) →
(

0, x21, a2x2, a3x3, . . .
)

, (x1, x2, x3, . . .) ∈ B

lim
n→∞

kn = lim
n→∞

(

2

n
∏

i=2

ai

)

= 1.

∥

∥Tnx − Tny
∥

∥

2
≤

∥

∥x − y
∥

∥

2
+ k

∥

∥x − y−
(

Tnx − Tny
)∥

∥+ µnφ(
∥

∥x − y
∥

∥)+ ξn.

(1)
〈

Fx∗, x − x∗
〉

≥ 0, ∀x ∈ C .
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problems such as; in operational research, economics, engineering design etc., see for 
example Jianghua (2008), Noor (2007), Kinderlehrer and Stampacchia (1980) and the 
references therein.

It was Yamada (2001) proposed a hybrid steepest decent method for solving variational 
inequality problem, which generate a sequence {xn} by the following iterative algorithm:

where T is nonexpansive mapping, F is L-Lipschitzian and η-strongly monotone with 
L > 0, η > 0, 0 < µ <

2η
L2

 and �n ⊆ (0, 1) satisfying the following conditions:

They showed that, the sequence {xn} generated by algorithm (2) converged strongly to 
the unique solution of variational inequality problem

Besides, he also proposed cyclic algorithm whose generate a sequence {xn} by

where T[n] = Tn(mod N ), he also got strong convergence results.
Marino and Xu (2006) introduced another algorithm for solving variational inequality 

problem, which generate a sequence {xn} by

where f is a contraction, A is strongly positive bounded linear operator, T is a nonex-
pansive, {αn} is a sequence in (0, 1) satisfying the conditions in Eq. (3), then they showed 
that, the sequence {xn} generated by algorithm (6), converged strongly to a common 
fixed point x∗ of T which solve the variational inequality problem

Tain (2010) combined algorithm (2) and (5), and he considered the following general 
iterative algorithm, which generate a sequence {xn} by:

where T is a nonexpansive, f is a contraction, F is k -Lipschitzian and η- strongly mono-
tone with k > 0, η > 0, 0 < µ <

2η
k2

 and {αn} is a sequence in (0, 1) satisfying the con-
ditions in Eq.  (3), then the sequence {xn} generated by algorithm (8), converged to a 
common fixed point x∗ of T which solves the variational inequality

(2)

{

x0 ∈ H is arbitrarily;

xn+1 = Txn − µn�nF(Txn), ∀n ≥ 0,

(3)

{

(i) limn→∞ �n = 0,
∑

�n = ∞;

(ii) either
∑

|�n+1 − �n| < ∞ or limn→∞
�n+1

�n
= 1.

(4)
〈

Fx∗, x − x∗
〉

≥ 0, ∀x ∈ Fix(T ).

(5)xx+1 = T �nxn = (I − µn�nF)T[n]xn, ∀n ≥ 0,

(6)

{

x0 ∈ H is arbitrarily;

xn+1 = αnγ f (xn)+ (I − αnA)Txn,

(7)
〈

(γ f − A)x∗, x − x∗
〉

≤ 0, ∀x ∈ Fix(T ).

(8)

{

x0 ∈ H is arbitrarily;
xn+1 = αnγ f (xn)+ (I − µαnF)Txn,

(9)�(γ f − µF)x∗, x − x∗� ≤ 0, ∀x ∈ Fix(T ).
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Tian and Di (2011) designed synchronal and cyclic algorithm based on the general itera-
tive algorithm proposed by Tain (2010) for finding the common fixed point x∗ of finite 
family of strict pseudocontraction mapping, which is the solution of the variational ine-
quality problem

and they obtained the strong convergent results as shown below:

Theorem  3 (Synchronal Algorithm). Let H be a real Hilbert space and Ti : H → H 
be a ki−strict pseudocontraction, for some ki ⊂ (0, 1), (i = 1, 2, 3, . . . ,N ) such that 
⋂N

i=1 Fix(Ti) �= ∅, let f be a contraction with coefficient β ∈ (0, 1) and �i be a positive con-
stant such that 

∑N
i=1 �i = 1. Let G : H → H be a η -strongly monotone and L-Lipschitzian 

operator with L > 0 and η > 0. Assume that 0 < µ <
2η
L2
, 0 < γ < µ(η −

µL2

2 )/β = τ
β

 . 
Given the initial guess x0 ∈ H chosen arbitrarily and given sequences {αn} and {βn} in 
(0, 1) satisfying the following conditions:

Let {xn} be the sequence defined by

Then {xn} converged strongly to a common point of {Ti}
N
i=1 which solves the variational 

inequality problem (10).

Theorem  4 (Cyclic Algorithm) Let H be a real Hilbert space and Ti : H → H 
be a ki− strict pseudo-contraction for some ki ∈ (0, 1) (i = 1, 2, 3, . . . ,N ) such that 
⋂N

i=1 Fix(Ti) �= ∅ and let f be a contraction with coefficient β ∈ (0, 1). Let G : H → H be 
a η -strongly monotone and L-Lipschitzian operator with L > 0 and η > 0. Assume that 

0 < γ < µ

(

η −
µL2

2

)

/β = τ
β

. Given the initial guess x0 ∈ H chosen arbitrarily and given 
sequences {αn} and {βn} in (0, 1) satisfying the following conditions:

let {xn} be the sequence defined by

(10)�(γ f − µG)x∗, x − x∗� ≤ 0, ∀x ∈

N
⋂

i=1

Fix(Ti),

(11)











(i) limn→∞ αn = 0,
�

αn = ∞;

(ii)
�

|αn+1 − αn| < ∞,
�

|βn+1 − βn| < ∞;

(iii) 0 ≤ maxi ki ≤ βn < a < 1, ∀n ≥ 0.

(12)

{

T
βn = βnI + (1− βn)

∑

N

i=1
�iTi;

xn+1 = αnγ f (xn)+ (I − αnµG)Tβnxn.

(13)











(i) limn→∞ αn = 0,
�

αn = ∞;

(ii)
�

|αn+1 − αn| < ∞, or limn→∞
αn

αn+1
= 1;

(iii) β[n] ∈ [k , 1), where k = max{ki : 1 ≤ i ≤ N },

(14)

{

A[n] = β[n]I + (1− β[n])T[n];

xn+1 = αnγ f (xn)+ (I − αnµG)A[n+1]xn,
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where T[n] = Ti, with i=n(mod N), 1 ≤ i ≤ N , namely T[n] is one of T1,T2,T3, . . . ,TN cir-
cularly. Then {xn} converged strongly to a common point of {Ti}

N
i=1 which solve the vari-

ational inequality problem (10).

And also Auwalu et al. (2013) proved the following results in real Banach space which 
is the generalization of Tian and Di (2011).

Theorem  5 (Synchronal Algorithm) Let E be a real q-uniformly smooth Banach 
space, and C be a nonempty closed convex subset of E. Let Ti : C → C be a ki−strict 
pseudocontractions for some ki ∈ (0, 1), (i = 1, 2, 3, . . . ,N ) such that 

⋂N
i=1 Fix(Ti) �= ∅ . 

Let f be a contraction with coefficient β ∈ (0, 1) and {�i}Ni=1 be a sequence of posi-
tive number such that 

∑N
i=1 �i = 1. Let G : C → C be an η-strongly accretive and 

L-Lipschitzian operator with L > 0 and η > 0. Assume that 0 < µ < (qη/dqL
q)1/q−1, 

0 < γ < µ(η − dqµ
q−1Lq/q)/β = τ

β
. Let {αn} and {βn} be sequences in (0,1) satisfying the 

following conditions:

Let {xn} be a sequence defined by algorithm (12), then {xn} converged strongly to a com-
mon fixed point of {Ti}

N
i=1 which solve the variational inequality problem (10).

Motivated by these two results, in this paper, we modified the algorithms of Tian and 
Di (2011) to the class of total asymptotically strict pseudocontraction mapping to solve 
the fixed-point problem as well variational inequality problem, this will be done in the 
frame work of real Hilbert space. By imposing some conditions, we obtained new strong 
convergence results. The results presented in this paper, not only extend and improve 
the results of Tian and Di (2011) but also extend, improve and generalize the results of; 
Yamada (2001), Marino and Xu (2006), Tain (2010) and Mainge (2009).

Preliminaries
In the sequel we shall make use of the following lemmas in proving our main results.

Lemma 6 (Marino and Xu 2007) Let H be a Hilbert space, there hold the following 
identities;

(i) 
∥

∥x − y
∥

∥

2
= �x�2 −

∥

∥y
∥

∥

2
− 2

〈

x − y, y
〉

, ∀x, y ∈ H;

(ii) ∥∥tx + (1− t)y
∥

∥

2
= t�x�2 + (1− t)

∥

∥y
∥

∥

2
− t(1− t)

∥

∥x − y
∥

∥

2
, ∀t ∈ [0, 1] and x, y ∈ H ;

(iii) if {xn} is a sequence in H such that xn ⇀ z, then 

(15)































(k1) limn→∞ αn = 0,
�

αn = ∞;

(k2)
�

|αn+1 − αn| < ∞,
�

|βn+1 − βn| < ∞;

(k3) 0 < k ≤ βn < a < 1, ∀n ≥ 0, where k = min{ki : 1 ≤ i ≤ N };

(k4) αn,βn ∈ [µ, 1), where µ ∈
�

max{0, 1−
�

�q
dq

�
1

q−1
}, 1

�

.

lim sup
n→∞

∥

∥xn − y
∥

∥

2
= lim sup

n→∞
�xn − z�2 +

∥

∥z − y
∥

∥

2
, ∀y ∈ H .
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Lemma 7 (Chang et al. 2013) Let C be a nonempty closed convex subset of a real Hilbert 
space H and let T : C → C be a (k , {µn}, {ξn}, φ)-total asymptotically strict pseudocon-
traction mapping and uniformly L-Lipschitzian. Then I − T  is demiclosed at zero in the 
sense that if {xn} is a sequence in C such that xn ⇀ x∗, and lim supn→∞ �(Tn − I)xn� = 0 , 
then (T − I)x∗ = 0.

Lemma 8 (Xu 2002) Assume that {an} is a sequence of nonnegative real number such 
that

where γn is a sequence in (0, 1) and σn is a sequence of real number such that;

(i) limn→∞ γn = 0 and
∑

γn = ∞;
(ii) limn→∞

σn
γn

≤ 0 or 
∑

|σn| < ∞. Then limn→∞ an = 0.

Lemma 9 (Tian and Di 2011) Let F : H → H be a η -strongly monotone and L-Lip-
schitzian operator with L > 0 and η > 0. Assume that 0 < µ <

2η
L2

, τ = µ

(

η −
2L2µ
2

)

 and 
0 < t < 1. Then

Lemma 10 Let S : C → H be a uniformly L-Lipschitzian mapping with L ∈ (0, 1]. 
Define T : C → H by Tβnx = βnx + (1− βn)S

nx with βn ∈ (0, 1) and ∀x ∈ C. Then Tβn is 
nonexpansive and Fix(Tβn) = Fix(Sn).

Proof Let x, y ∈ C , from Lemma [6(ii)], we have

since L ∈ (0, 1] and βn ∈ (0, 1), it follow that, Tβn is nonexpansive, and it is not difficult to 
see that Fix(Tβn) = Fix(Sn).  �

Lemma 11 (Tain 2010) Let H be a real Hilbert space, f : H → H be a contraction 
with coefficient 0 < α < 1 and F : H → H be a L-Lipschitzian continuous operator and  
η-strongly monotone operator with L > 0 and η > 0. Then for 0 < γ <

µη
α

,

Main results
In this section, we prove the following theorem which is the extension of the theorems 
(3) and (4).

an+1 ≤ (1− γn)an + σn, n ≥ 0,

∥

∥(I − µtF)x − (I − µtF)y
∥

∥ ≤ (I − τ t)
∥

∥x − y
∥

∥.

∥

∥Tβnx − Tβny
∥

∥

2
=

∥

∥βn(x − y)+ (1− βn)(S
nx − Sny)

∥

∥

2

= βn
∥

∥x − y
∥

∥

2
+ (1− βn)

∥

∥Snx − Sny
∥

∥

2

− βn(1− βn)
∥

∥(x − y)−
(

Snx − Sny
)∥

∥

2

≤ βn
∥

∥x − y
∥

∥

2
+ (1− βn)

∥

∥Snx − Sny
∥

∥

2

≤
(

βn + (1− βn)L
2
)

∥

∥x − y
∥

∥

2
,

〈

x − y, (µF − γ f )x − (µF − γ f )y
〉

≥ (µη − γα)
∥

∥x − y
∥

∥

2
.
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Theorem  12 Let T : H → H be a (k , {µn}, {ξn},φ)-total asymptotically strict pseu-
docontraction mapping and uniformly M-Lipschitzian with φ(t) = t2, ∀t ≥ 0 and 
M ∈ (0, 1]. Assume that Fix(Tn) �= ∅, and let f be a contraction with coefficient β ∈ (0, 1) , 
G : H → H be a η -strongly monotone and L-Lipschitzian operator with L > 0 and η > 0 
respectively. Assume that 0 < γ < µ(η −

µL2

2 )/β = τ
β

 and let x0 ∈ H be chosen arbitrar-
ily, {αn} and {βn} be two sequences in (0,1) satisfying the following conditions:

Let {xn} be a sequence defined by

then {xn} converges strongly to a common fixed of Tn which solve the variational inequal-
ity problem

Proof The proof is divided into five steps as follows.

Step 1. In this step, we show that

The proof follows directly from Lemma (10).

Step 2. In this step, we show that

Let x∗ ∈ Fix(Tn), from (17) and Lemma (9), and the fact that f is a contraction, we have

By using induction, we have

(16)











(i) limn→∞ αn = 0 and
�

αn = ∞;

(ii)
�

|αn+1 − αn| < ∞,
�

|βn+1 − βn| < ∞ and
�

|1− βn| < ∞;

(iii) 0 ≤ k ≤ βn < a < 1, ∀n ≥ 0.

(17)

{

T
βn = βnI + (1− βn)T

n;

xn+1 = αnγ f (xn)+ (I − αnµG)Tβnxn,

(18)�(γ f − µG)x∗, x − x∗� ≤ 0, ∀x ∈ Fix
(

Tn
)

.

(19)Tβn is nonexpansive and Fix(Tβn) = Fix
(

Tn
)

.

(20){xn}, {T
nxn}, {f (xn)} and {GTnxn} are all bounded.

∥

∥xn+1 − x∗
∥

∥ =
∥

∥αnγ f (xn)+ (I − αnµG)Tβnxn − x∗
∥

∥

=
∥

∥αn(γ f (xn)− µGx∗)+ (I − αnµG)Tβnxn − (I − αnµG)x∗
∥

∥

≤ (1− αnτ )
∥

∥xn − x∗
∥

∥+ αn
∥

∥γ (f (xn)− f (x∗))+ γ f (x∗)− µGx∗)
∥

∥

≤ (1− αn(τ − γβ))
∥

∥xn − x∗
∥

∥+ αn
∥

∥γ f (x∗)− µGx∗)
∥

∥

≤ max

{

∥

∥xn − x∗
∥

∥,

∥

∥γ f (x∗)− µGx∗)
∥

∥

(τ − γβ)

}

.

(21)
∥

∥xn+1 − x∗
∥

∥ ≤ max

{

∥

∥x0 − x∗
∥

∥,

∥

∥γ f (x∗)− µGx∗)
∥

∥

(τ − γβ)

}

.
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Hence {xn} is bounded, and also

From (22), we deduce that

This implies that

where M∗ is chosen arbitrarily such that

It follows from (23) that {Tnxn} is bounded. Since G is L-Lipschitzian, f is contraction 
and the fact that {xn}, {Tnxn} are bounded, it is easy to see that {GTnxn} and {f (xn)} are 
also bounded.

Step 3. In this step, we show that

Now,

(22)

∥

∥Tnxn − x∗
∥

∥

2
≤

∥

∥xn − x∗
∥

∥

2
+ k

∥

∥xn − x∗ −
(

Tnxn − x∗
)
∥

∥

2
+ µnφ

(
∥

∥xn − x∗
∥

∥

)

+ ξn

=
∥

∥xn − x∗
∥

∥

2
+ k

∥

∥xn − x∗
∥

∥

2
+ k

∥

∥Tnxn − x∗
∥

∥

2

+ 2k
∥

∥xn − x∗
∥

∥

∥

∥Tnxn − x∗
∥

∥+ µn

∥

∥xn − x∗
∥

∥

2
+ ξn

≤ (1+ k + µn)
∥

∥xn − x∗
∥

∥

2
+ 2k

∥

∥xn − x∗
∥

∥

∥

∥Tnxn − x∗
∥

∥

+ k
∥

∥Tnxn − x∗
∥

∥

2
+ ξn.

(1− k)
∥

∥Tnxn − x∗
∥

∥

2
− 2k

∥

∥xn − x∗
∥

∥

∥

∥Tnxn − x∗
∥

∥

− (1+ k + µn)
∥

∥xn − x∗
∥

∥

2
− ξn ≤ 0.

(23)

∥

∥T
n
xn − x

∗
∥

∥ ≤
k�xn − x

∗�

(1− k)

+

√

4k2�xn − x∗�2 + 4(1− k){(1+ k + µn)�xn − x∗�2 + ξn}

2(1− k)

=
k�xn − x

∗� +
√

(1+ (1− k)µn)�xn − x∗�2 + (1− k)ξn

(1− k)

≤
k�xn − x

∗� + (1+ (1− k)µn)�xn − x
∗�2 + (1− k)ξn

(1− k)

∥

∥T
n
xn − x

∗
∥

∥ ≤ M
∗
,

sup

(

k�xn − x∗� + (1+ (1− k)µn))�xn − x∗�2 + (1− k)ξn

(1− k)

)

≤ M∗.

(24)lim
n→∞

�xn+1 − xn� = 0.

xn+2 − xn+1 =
(

αn+1γ f (xn+1)+ (I − αn+1µG)Tβn+1xn+1

)

−
(

αnγ f (xn)+ (I − αnµG)Tβnxn

)

= αn+1γ (f (xn+1)− f (xn))+ (αn+1 − αn)γ f (xn)

+ (I − αn+1µG)Tβn+1xn+1 − (I − αn+1µG)Tβnxn

+ (αn − αn+1)µGT
βnxn,
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this turn to implies that

where N1 is chosen arbitrarily so that sup
n≥1

(

γ
∥

∥f (xn)
∥

∥+ µ
∥

∥GTβnxn
∥

∥

)

≤ N1.
On the other hand,

where N2,3,4 satisfy the following relations:

respectively.
Now substituting (26) into (25), yields

where N5 choosing appropriately such that N5 ≥ max{N1,N2,N3,N4}.
By Lemma (8) and (ii), it follows that

From Eq. (17), we have,

On the other hand,

(25)

�xn+2 − xn+1� ≤αn+1γβ�xn+1 − xn� + (1− αn+1τ )
∥

∥Tβn+1xn+1 − Tβnxn
∥

∥

+ |αn+1 − αn|
(

γ
∥

∥f (xn)
∥

∥+ µ
∥

∥GTβnxn
∥

∥

)

≤αn+1γβ�xn+1 − xn� + (1− αn+1τ )
∥

∥Tβn+1xn+1 − Tβnxn
∥

∥

+ |αn+1 − αn|N1,

(26)

∥

∥Tβn+1xn+1 − Tβnxn
∥

∥ ≤
∥

∥Tβn+1xn+1 − Tβn+1xn
∥

∥+
∥

∥Tβn+1xn − Tβnxn
∥

∥

≤ �xn+1 − xn� + |βn+1 − βn|�xn� + |1− βn+1|

∥

∥

∥
Tn+1xn

∥

∥

∥

+ |(1− βn)|
∥

∥Tnxn
∥

∥

≤ �xn+1 − xn� + |βn+1 − βn|N2 + |1− βn+1|N3 + |1− βn|N4,

N2 ≥ sup
n≥1

�xn�, N3 ≥ sup
n≥1

∥

∥

∥
T

n+1
xn

∥

∥

∥
and N4 ≥ sup

n≥1

∥

∥T
n
xn

∥

∥

�xn+2 − xn+1� ≤ αn+1γβ�xn+1 − xn� + (1− αn+1τ)

(

�xn+1 − xn�

+ |βn+1 − βn|N2 + |1− βn+1|N3 + |1− βn|N4

)

+ |αn+1 − αn|N1

= (1+ αn+1(γβ − τ))�xn+1 − xn� + |αn+1 − αn|N1

+ (1− αn+1τ)

(

|βn+1 − βn|N2 + |1− βn+1|N3 + |1− βn|N4

)

≤ (1− αn+1(τ − γβ)�xn+1 − xn�

+ (1− αn+1τ)

(

|βn+1 − βn| + |1− βn+1| + |1− βn| + |αn+1 − αn|
)

N5,

lim
n→∞

�xn+1 − xn� = 0.

∥

∥xn+1 − Tβnxn
∥

∥ =
∥

∥αnγ f (xn)+ (I − αnµG)Tβnxn − Tβnxn
∥

∥

≤ αn
∥

∥γ f (xn)− µGTβnxn
∥

∥ → 0.

∥

∥xn+1 − Tβnxn
∥

∥ =
∥

∥xn+1 − (βn + (1− βn)T
n)xn

∥

∥

=
∥

∥(xn+1 − xn)+ (1− βn)(xn − Tnxn)
∥

∥

≥ (1− βn)
∥

∥xn − Tnxn
∥

∥− �xn+1 − xn�,



Page 10 of 13Bulama and Kılıçman  SpringerPlus  (2016) 5:103 

this implies that

From the boundedness of {xn}, we deduce that {xn} converges weakly. Now assume that 
xn ⇀ p, by Lemma (7) and the fact that �xn − Tnxn� → 0, we obtain p ∈ Fix(Tn). So, we 
have

By Lemma (11) it follows that (γ f − µG) is strongly monotone, so the variational ine-
quality (18) has a unique solution x∗ ∈ Fix(Tn).

Step 4. In this step, we show that

The fact that {xn} is bounded, we have {xni} ⊂ {xn} such that

Suppose without loss of generality that xni ⇀ x, from (27), it follows that x ∈ Fix(Tn). 
Since x∗ is the unique solution of (17), implies that

Step 5. In this step, we show that

By Lemma (9) and the fact that f is a contraction, we have

∥

∥xn − Tnxn
∥

∥ ≤

∥

∥xn+1 − Tβnxn
∥

∥+ �xn+1 − xn�

(1− βn)

≤

∥

∥xn+1 − Tβnxn
∥

∥+ �xn+1 − xn�

(1− a)
→ 0.

(27)ωω(xn) ⊂ Fix
(

Tn
)

.

(28)lim sup
n→∞

〈

(γ f − µG)x∗, xn − x∗
〉

≤ 0.

lim sup
n→∞

〈

(γ f − µG)x∗, xn − x∗
〉

= lim sup
i→∞

〈

(γ f − µG)x∗, xni − x∗
〉

≤ 0.

lim sup
n→∞

〈

(γ f − µG)x∗, xn − x∗
〉

= lim sup
i→∞

〈

(γ f − µG)x∗, xni − x∗
〉

.

=
〈

(γ f − µG)x∗, x − x∗
〉

≤ 0.

(29)lim
n→∞

∥

∥xn − x∗
∥

∥ = 0.

∥

∥xn+1 − x∗
∥

∥

2
=

∥

∥αn(γ f (xn)− µGx∗)+ (I − αnµG)Tβnxn − (I − αnµG)x∗
∥

∥

2

≤
∥

∥(I − αnµG)Tβnxn − (I − αnµG)x∗
∥

∥

2

+ 2αn
〈

γ f (xn)− µGx∗, xn+1 − x∗
〉

≤ (1− αnτ )
2
∥

∥xn − x∗
∥

∥

2
+ 2αnγ

〈

f (xn)− f (x∗), xn+1 − x∗
〉

+ 2αn
〈

γ f (x∗)− µGx∗, xn+1 − x∗
〉

≤ (1− αnτ )
2
∥

∥xn − x∗
∥

∥

2
+ 2αnβγ

∥

∥xn − x∗
∥

∥

∥

∥xn+1 − x∗
∥

∥

+ 2αn
〈

γ f (x∗)− µGx∗, xn+1 − x∗
〉

≤ (1− αnτ )
2
∥

∥xn − x∗
∥

∥

2
+ αnβγ

(

∥

∥xn − x∗
∥

∥

2
+

∥

∥xn+1 − x∗
∥

∥

2
)

+ 2αn
〈

γ f (x∗)− µGx∗, xn+1 − x∗
〉

,
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this implies that

this implies that

where

From [12(i)], it follows that

Thus limn→∞
σn
γn

≤ 0.
Hence by Lemma (8), it follows that xn → x∗ as n → ∞.  �

Corollary 13 Let B be a unit ball in a real Hilbert space l2, and let the mapping 
T : B → B be defined by

where {ai} is a sequence in (0, 1) such that 
∏∞

i=2(ai) =
1
2. Let, f ,G, γ , {αn}, {βn} be as in 

theorem (12). Then the sequence {xn} define by algorithm (17), converges strongly to a 
common fixed point of Tn which solve the variational inequality problem (18).

Proof By example (1), it follows that T is (k , {µ}, {ξn},φ)-total asymptotically strict 
pseudocontraction mapping and uniformly M-Lipschitzian with M = 2

∏n
i=2(ai). 

Hence, the conclusion of this corollary, follows directly from theorem (12).  �

Corollary 14 Let H be a real Hilbert space and T : H → H be a (k , {kn})- asymptoti-
cally strict pseudocontraction mapping and uniformly M-Lipschitzian with M ∈ (0, 1]. 

∥

∥xn+1 − x∗
∥

∥

2
≤

(

(1− αnτ )
2 + αnβγ

)

�xn − x∗�2

(1− αnγβ)

+
2αn

〈

γ f (x∗)− µGx∗, xn+1 − x∗
〉

(1− αnγβ)

≤
(

1− (2τ − γβ)αn

)

∥

∥xn − x∗
∥

∥

2
+

(αnτ )
2

(1− αnγβ)

∥

∥xn − x∗
∥

∥

2

+
2αn

〈

γ f (x∗)− µGx∗, xn+1 − x∗
〉

(1− αnγβ)
,

∥

∥xn+1 − x∗
∥

∥

2
≤ (1− γn)

∥

∥xn − x∗
∥

∥

2
+ σn,

γn := (2τ − γβ)αn and

σn :=
αn

(1− αnγβ)

(

αnτ
2
∥

∥xn − x∗
∥

∥

2
+ 2

〈

γ f (x∗)− µGx∗, xn+1 − x∗
〉

)

.

lim
n→∞

γn = 0,

∑

γn = ∞,

σn

γn
=

1

(2τ − γβ)(1− αnγβ)

(

αnτ
2
∥

∥xn − x∗
∥

∥

2
+ 2

〈

γ f (x∗)− µGx∗, xn+1 − x∗
〉

)

.

T : (x1, x2, x3, . . .) →
(

0, x21, a2x2, a3x3, . . .
)

, (x1, x2, x3, . . .) ∈ B,
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Assume that Fix(Tn) �= ∅, and Let f ,G, γ {αn} and {βn} be as in theorem (12). Then, the 
sequence {xn} generated by algorithm (17), converges strongly to a common fixed point of 
Tn which solve the variational inequality problem (18).

Corollary 15 (Tain 2010) Let the sequence {xn} be generated by the mapping

where T is nonexpansive, αn is a sequence in (0,1) satisfying the conditions in Eq. (11). It 
was proved in Tain (2010) that {xn} converged strongly to the common fixed point x∗ of T, 
which is the solution of variational inequality problem

Proof Take n=1, k = µn = ξn = 0 and F = G in theorem (12). Therefore all the condi-
tions in theorem (12) are satisfied. Hence the conclusion of this corollary follows directly 
from theorem (12).  �

Corollary 16 (Marino and Xu 2006) Let the sequence {xn} be generated by

where T is nonexpansive and the sequence αn ⊂ (0, 1) satisfy the conditions in Eq.  (16). 
Then it was proved in Marino and Xu (2006) that {xn} converged strongly to x∗ which solve 
the variational inequality

Proof Take n=1, µn = ξn = 0 and µ = 1 and G = A in theorem (12). Therefore all the 
conditions in theorem (12) are satisfied. Hence the conclusion of this corollary follows 
directly from theorem (12).  �

Corollary 17 (Yamada 2001) Let the sequence {xn} be generated by

where T is nonexpansive mapping on H, F is L-Lipschitzian and η-strongly monotone with 
L > 0, η > 0 and 0 < µ <

2η
L2

, if the sequence �n ⊂ (0, 1) satisfies the conditions in (3). 
Then, it was proved by Yamada (2001) that {xn} converged strongly to the unique solution 
of the variational inequality

Proof Take n = 1, k = µn = ξn = 0 and also take γ = 0, βn = 0 and G = F . Therefore 
all the conditions in theorem (12) are satisfied. Hence the result follows directly from 
theorem (12).  �

Conclusion
In this paper, we modified the algorithms by Tian and Di (2011) in order to include the 
class of total asymptotically strict pseudocontraction mapping to solve the fixed-point 

xn+1 = αnγ f (xn)+ (I − µαnF)Txn,

(30)�(γ f − µF)x∗, x − x∗� ≤ 0, ∀x ∈ Fix(T ).

xn+1 = αnγ f (xn)+ (I − αnA)Txn,

(31)�(γ f − A)x∗, x − x∗� ≤ 0, ∀x ∈ Fix(T ).

xn+1 = Txn − µ�nF(Txn),

(32)�Fx∗, x − x∗� ≥ 0, ∀x ∈ Fix(T ).
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problem as well variational inequality problem, this was done in the frame work of real 
Hilbert spaces. By imposing some conditions, we also obtained some new strong conver-
gence results. Further we state that the results which were presented in this paper, not 
only extend and improve the results (Tian and Di 2011) but also extend, improve and 
generalize the results of; Yamada (2001), Marino and Xu (2006), Tain (2010) and Mainge 
(2009).
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