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Abstract

In this paper, we construct the hybrid block iterative algorithm for finding a common element of the set of common
fixed points of an infinite family of closed and uniformly quasi -φ- asymptotically nonexpansive mappings, the set of
the solutions of the variational inequality for an α-inverse-strongly monotone operator, and the set of solutions of a
system of equilibrium problems. Moreover, we obtain a strong convergence theorem for the sequence generated by
this process in the framework Banach spaces. The results presented in this paper improve and generalize some
well-known results in the literature.
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Introduction
In the theory of variational inequalities, variational inclu-
sions, and equilibrium problems, the development of
an efficient and implementable iterative algorithm is
interesting and important. Equilibrium theory repre-
sents an important area of mathematical sciences such
as optimization, operations research, game theory, finan-
cial mathematics and mechanics. Equilibrium problems
include variational inequalities, optimization problems,
Nash equilibria problems, saddle point problems, fixed
point problems, and complementarity problems as special
cases.
Let C be a nonempty closed convex subset of a real

Banach space E with ‖·‖ and E∗ the dual space of E andA :
C → E∗ be an operator. The classical variational inequal-
ity problem for an operator A is to find x∗ ∈ C such
that

〈Ax∗, y − x∗〉 ≥ 0, ∀y ∈ C. (1.1)
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The set of solution of (1.1) is denoted by VI(A,C). Recall
that let A : C → E∗ be a mapping. Then A is called

(i) monotone if

〈Ax − Ay, x − y〉 ≥ 0, ∀x, y ∈ C,

(ii) α−inverse-strongly monotone if there exists a
constant α > 0 such that

〈Ax − Ay, x − y〉 ≥ α‖Ax − Ay‖2, ∀x, y ∈ C.

Such a problem is connected with the convex minimiza-
tion problem, the complementary problem, the problem
of finding a point x∗ ∈ E satisfying Ax∗ = 0.
Let {fi}i∈� : C×C → R be a bifunction, {ϕi}i∈� : C → R

be a real-valued function, where � is an arbitrary index
set. The system of equilibrium problems, is to find x ∈ C
such that

fi(x, y) ≥ 0, i ∈ �, ∀y ∈ C. (1.2)

The set of solution of (1.2) is denoted by SEP. If � is a
singleton, then problem (1.2) reduces to the equilibrium
problem, is to find x ∈ C such that

f (x, y) ≥ 0, ∀y ∈ C. (1.3)
© 2012 Saewan and Kumam; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
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The set of solution of (1.3) is denoted by EP(f ). The above
formulation (1.3) was shown in (Blum and Oettli 1994)
to cover monotone inclusion problems, saddle point
problems, minimization problems, optimization prob-
lems, variational inequality problems, vector equilibrium
problems, Nash equilibria in noncooperative games. In
addition, there are several other problems, for example,
the complementarity problem, fixed point problem and
optimization problem, which can also be written in the
form of an EP(f ). In other words, the EP(f ) is an unifying
model for several problems arising in physics, engineer-
ing, science, optimization, economics, etc. In the last two
decades, many papers have appeared in the literature
on the existence of solutions of EP(f ); see, for example
(Blum and Oettli 1994; Combettes and Hirstoaga 2005)
and references therein. Some solution methods have been
proposed to solve the EP(f ); see, for example, (Blum and
Oettli 1994; Combettes and Hirstoaga 2005; Jaiboon and
Kumam 2010; Katchang and Kumam 2010; Kumam 2009;
Moudafi 2003; Qin et al. 2009a,2009b,2009c; Saewan
andKumam2010b,2011a,2011b,2011c,2011d,2011e,2011f,
2011g,2012b; Zegeye et al. 2010) and references therein.
For each p > 1, the generalized duality mapping Jp :

E → 2E∗ is defined by

Jp(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖p, ‖x∗‖ = ‖x‖p−1}
for all x ∈ E. In particular, J = J2 is called the normalized
duality mapping. If E is a Hilbert space, then J = I, where
I is the identity mapping. Consider the functional defined
by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2, ∀x, y ∈ E. (1.4)

As well know that if C is a nonempty closed convex
subset of a Hilbert space H and PC : H → C is the
metric projection of H onto C, then PC is nonexpansive.
This fact actually characterizes Hilbert spaces and conse-
quently, it is not available in more general Banach spaces.
It is obvious from the definition of function φ that

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖ + ‖y‖)2, ∀x, y ∈ E.
(1.5)

If E is a Hilbert space, then φ(x, y) = ‖x − y‖2, for all
x, y ∈ E. On the author hand, the generalized projection
(Alber 1996) �C : E → C is a map that assigns to an
arbitrary point x ∈ E the minimum point of the functional
φ(x, y), that is, �Cx = x̄, where x̄ is the solution to the
minimization problem

φ(x̄, x) = inf
y∈C φ(y, x), (1.6)

existence and uniqueness of the operator�C follows from
the properties of the functional φ(x, y) and strict mono-
tonicity of the mapping J (see, for example, Alber 1996;

Alber and Reich 1994; Cioranescu 1990; Kamimura and
Takahashi 2002; Takahashi 2000).

Remark 1.1. If E is a reflexive, strictly convex and smooth
Banach space, then for x, y ∈ E, φ(x, y) = 0 if and only
if x = y. It is sufficient to show that if φ(x, y) = 0 then
x = y. From (1.4), we have ‖x‖ = ‖y‖. This implies that
〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definition of J , one has
Jx = Jy. Therefore, we have x = y; see (Cioranescu 1990;
Takahashi 2000) for more details.

LetC be a closed convex subset of E, a mappingT : C →
C is said to be L-Lipschitz continuous if ‖Tx−Ty‖ ≤ L‖x−
y‖, ∀x, y ∈ C and a mapping T is said to be nonexpansive
if ‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C. A point x ∈ C is a fixed
point of T provided Tx = x. Denote by F(T) the set of
fixed points of T ; that is, F(T) = {x ∈ C : Tx = x}. Recall
that a point p in C is said to be an asymptotic fixed point
ofT (Reich 1996) ifC contains a sequence {xn}which con-
verges weakly to p such that limn→∞ ‖xn − Txn‖ = 0.
The set of asymptotic fixed points of T will be denoted by
F̃(T).
A mapping T from C into itself is said to be relatively

nonexpansive (Nilsrakoo and Saejung 2008; Su et al. 2008;
Zegeye and Shahzad 2009) if F̃(T) = F(T) and φ(p,Tx) ≤
φ(p, x) for all x ∈ C and p ∈ F(T). The asymptotic behav-
ior of a relatively nonexpansive mapping was studied in
(Butnariu et al. 2001, 2003; Censor and Reich 1996). T
is said to be φ-nonexpansive, if φ(Tx,Ty) ≤ φ(x, y) for
x, y ∈ C. T is said to be relatively quasi-nonexpansive if
F(T) �= ∅ and φ(p,Tx) ≤ φ(p, x) for all x ∈ C and p ∈
F(T). T is said to be quasi-φ-asymptotically nonexpansive
if F(T) �= ∅ and there exists a real sequence {kn} ⊂[ 1,∞)

with kn → 1 such that φ(p,Tnx) ≤ knφ(p, x) for all n ≥ 1
x ∈ C and p ∈ F(T).
We note that the class of relatively quasi-nonexpansive

mappings is more general than the class of relatively non-
expansive mappings (Butnariu et al. 2001, 2003; Censor
and Reich 1996; Matsushita and Takahashi 2005; Saewan
et al. 2010) which requires the strong restriction: F(T) =
F̃(T). A mapping T is said to be closed if for any sequence
{xn} ⊂ C with xn → x and Txn → y, then Tx = y. It is
easy to know that each relatively nonexpansive mapping is
closed.

Definition 1.2. (Chang et al. 2010 (1) Let {Ti}∞i=1 : C → C
be a sequence of mapping. {Ti}∞i=1 is said to be a family
of uniformly quasi-φ-asymptotically nonexpansive map-
pings, if∩∞

i=1F(Ti) �= ∅, and there exists a sequence {kn} ⊂
[ 1,∞)with kn → 1 such that for each i ≥ 1

φ(p,Tn
i x) ≤ knφ(p, x), ∀p∈∩∞

i=1F(Ti), x∈ C, ∀n≥1.
(1.7)
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(2) A mapping T : C → C is said to be uniformly L-
Lipschitz continuous, if there exists a constant L > 0 such
that

‖Tnx − Tny‖ ≤ L‖x − y‖, ∀x, y ∈ C. (1.8)

Remark 1.3. It is easy to see that an α−inverse-strongly
monotone is monotone and 1

α
-Lipschitz continuous.

In 2004, Matsushita and Takahashi (2004) introduced
the following iteration: a sequence {xn} defined by

xn+1 = �CJ−1(αnJxn + (1 − αn)JTxn), (1.9)

where the initial guess element x0 ∈ C is arbitrary, {αn}
is a real sequence in [0,1], T is a relatively nonexpansive
mapping and �C denotes the generalized projection from
E onto a closed convex subsetC of E. They proved that the
sequence {xn} converges weakly to a fixed point of T .
In 2005, Matsushita and Takahashi (2005) proposed the

following hybrid iteration method (it is also called the
CQ method) with generalized projection for relatively
nonexpansive mapping T in a Banach space E:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x0 ∈ C chosen arbitrarily,
yn = J−1(αnJxn + (1 − αn)JTxn),
Cn = {z ∈ C : φ(z, yn) ≤ φ(z, xn)},
Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = �Cn∩Qnx0.

(1.10)

They proved that {xn} converges strongly to �F(T)x0,
where �F(T) is the generalized projection from C onto
F(T). In 2008, Iiduka and Takahashi (2008) introduced
the following iterative scheme for finding a solution of
the variational inequality problem for an inverse-strongly
monotone operator A in a 2-uniformly convex and uni-
formly smooth Banach space E : x1 = x ∈ C and

xn+1 = �CJ−1(Jxn − λnAxn), (1.11)

for every n = 1, 2, 3, . . ., where �C is the generalized
metric projection from E onto C, J is the duality map-
ping from E into E∗ and {λn} is a sequence of positive real
numbers. They proved that the sequence {xn} generated
by (1.11) converges weakly to some element of VI(A,C).
Takahashi and Zembayashi (2008, 2009), studied the prob-
lem of finding a common element of the set of fixed points
of a nonexpansive mapping and the set of solutions of an
equilibrium problem in the framework of Banach spaces.
In 2009, Wattanawitoon and Kumam (2009) using

the idea of Takahashi and Zembayashi (2009) extend
the notion from relatively nonexpansive mappings
or φ-nonexpansive mappings to two relatively quasi-
nonexpansive mappings and also proved some strong
convergence theorems to approximate a common fixed
point of relatively quasi-nonexpansive mappings and
the set of solutions of an equilibrium problen in the

framework of Banach spaces. Cholamjiak (2009), proved
the following iteration:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

zn=�CJ−1(Jxn − λnAxn),
yn= J−1(αnJxn+βnJTxn+γnJSzn),
un∈C such that f (un, y)+ 1

rn 〈y−un, Jun−Jyn〉≥0, ∀y∈C,
Cn+1={z ∈ Cn :φ(z, un)≤φ(z, xn),
xn+1=�Cn+1x0,

(1.12)

where J is the duality mapping on E. Assume that {αn},
{βn} and {γn} are sequence in [0,1]. Then {xn} converges
strongly to q = �Fx0, where F := F(T) ∩ F(S) ∩ EP(f ) ∩
VI(A,C).
In 2010, Saewan et al. (2010) introduced a new hybrid

projection iterative scheme which is difference from
the algorithm (1.12) of Cholamjiak in (2009, Theorem
3.1) for two relatively quasi-nonexpansive mappings in
a Banach space. Motivated by the results of Takahashi
and Zembayashi (2008); Cholamjiak and Suantai (2010)
proved the strong convergence theorem by the hybrid
iterative scheme for approximation of a common
fixed point of countable families of relatively quasi-
nonexpansive mappings in a uniformly convex and uni-
formly smooth Banach space: x0∈E, x1=�C1x0, C1=C

⎧⎪⎪⎨
⎪⎪⎩

yn,i = J−1(αnJxn + (1 − αn)JTxn, )
un,i = Tfm

rm,nT
fm−1
rm−1,n · · ·Tf1

r1,nyn,i
Cn+1 = {z ∈ Cn : supi>1 φ(z, Jun,i) ≤ φ(z, Jxn)},
xn+1 = �Cn+1x0, n ≥ 1.

(1.13)

Then, they proved that under certain appropriate con-
ditions imposed on {αn}, and {rn,i}, the sequence {xn}
converges strongly to �Cn+1x0.
We note that the block iterative method is a method

which often used by many authors to solve the convex
feasibility problem (see, Kohsaka and Takahashi 2007;
Kikkawa and Takahashi 2004, etc.). In 2008, Plubtieng
andUngchittrakool (2008) established strong convergence
theorems of block iterative methods for a finite family of
relatively nonexpansive mappings in a Banach space by
using the hybrid method in mathematical programming.
Chang et al (2010) proposed the modified block itera-
tive algorithm for solving the convex feasibility problems
for an infinite family of closed and uniformly quasi-φ-
asymptotically nonexpansive mappings, they obtained the
strong convergence theorems in a Banach space. In 2010,
Saewan and Kumam (2010a) obtained the result for the
set of solutions of the generalized equilibrium problems
and the set of common fixed points of an infinite family of
closed and uniformly quasi-φ-asymptotically nonexpan-
sive mappings in a uniformly smooth and strictly convex
Banach space E with Kadec-Klee property.
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Very recently, Qin, Cho and Kang (2009a) purposed the
problem of approximating a common fixed point of two
asymptotically quasi-φ-nonexpansive mappings based on
hybrid projection methods. Strong convergence theorems
are established in a real Banach space. Zegeye et al. (2010)
introduced an iterative process which converges strongly
to a common element of set of common fixed points
of countably infinite family of closed relatively quasi-
nonexpansive mappings, the solution set of the gener-
alized equilibrium problem and the solution set of the
variational inequality problem for an α-inverse strongly
monotone mapping in Banach spaces.
Motivated and inspired by the work of Chang et al.

(2010); Qin et al. (2009c); Takahashi and Zembayashi
(2009); Wattanawitoon and Kumam (2009); Zegeye
(2010); Saewan and Kumam (2010a, 2012a), we introduce
a modified hybrid block projection algorithm for find-
ing a common element of the set of the solution of the
variational inequality for an α-inverse-strongly mono-
tone operator, and the set of solutions of the system of
equilibrium problems and the set of common fixed points
of an infinite family of closed and uniformly quasi-φ-
asymptotically nonexpansive mappings in a 2-uniformly
convex and uniformly smooth Banach space. The results
presented in this paper improve and generalize some
well-known results in the literature.

Preliminaries
A Banach space E is said to be strictly convex if ‖ x+y

2 ‖ < 1
for all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and x �= y. Let U =
{x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then a Banach
space E is said to be smooth if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ U. It is also said to be uniformly
smooth if the limit is attained uniformly for x, y ∈ U. Let
E be a Banach space. Themodulus of convexity of E is the
function δ :[0, 2]→ [0,1] defined by

δ(ε)= inf{1−‖x+y
2

‖ : x, y∈E, ‖x‖=‖y‖=1, ‖x−y‖≥ε}.
A Banach space E is uniformly convex if and only if δ(ε) >

0 for all ε ∈ (0, 2]. Let p be a fixed real number with p ≥
2. A Banach space E is said to be p-uniformly convex if
there exists a constant c > 0 such that δ(ε) ≥ cεp for
all ε ∈ [0,2]; see (Ball et al. 1994; Takahashi et al. 2002)
for more details. Observe that every p-uniformly convex
is uniformly convex. It is well known that a Hilbert space
is 2-uniformly convex, uniformly smooth. It is also known
that if E is uniformly smooth, then J is uniformly norm-
to-norm continuous on each bounded subset of E.

Remark 2.1. The following basic properties can be found
in Cioranescu (1990).

(i) If E is a uniformly smooth Banach space, then J is
uniformly continuous on each bounded subset of E.

(ii) If E is a reflexive and strictly convex Banach space,
then J−1 is norm-weak∗-continuous.

(iii) If E is a smooth, strictly convex, and reflexive Banach
space, then the normalized duality mapping
J : E → 2E∗ is single-valued, one-to-one, and onto.

(iv) A Banach space E is uniformly smooth if and only if
E∗ is uniformly convex.

(v) Each uniformly convex Banach space E has the
Kadec-Klee property, that is, for any sequence
{xn} ⊂ E, if xn ⇀ x ∈ E and ‖xn‖ → ‖x‖, then
xn → x.

We also need the following lemmas for the proof of our
main results.

Lemma 2.2. (Beauzamy (1985); Xu (1991)). If E be a 2-
uniformly convex Banach space. Then for all x, y ∈ E, we
have

‖x − y‖ ≤ 2
c2

‖Jx − Jy‖,
where J is the normalized duality mapping of E and 0 <

c ≤ 1.
The best constant 1

c in Lemma is called the p-uniformly
convex constant of E.
Lemma 2.3. (Beauzamy (1985); Zalinescu (1983)). If E be
a p-uniformly convex Banach space and let p be a given
real number with p ≥ 2. Then for all x, y ∈ E, jx ∈ Jp(x)
and jy ∈ Jp(y)

〈x − y, jx − jy〉 ≥ cp

2p−2p
‖x − y‖p,

where Jp is the generalized duality mapping of E and 1
c is

the p-uniformly convexity constant of E.
Lemma 2.4. (Kamimura and Takahashi (2002)). Let E be
a uniformly convex and smooth Banach space and let {xn}
and {yn} be two sequences of E. If φ(xn, yn) → 0 and either
{xn} or {yn} is bounded, then ‖xn − yn‖ → 0.

Lemma 2.5. (Alber (1996)). Let C be a nonempty closed
convex subset of a smooth Banach space E and x ∈ E. Then
x0 = �Cx if and only if

〈x0 − y, Jx − Jx0〉 ≥ 0, ∀y ∈ C.

Lemma 2.6. (Alber (1996, Lemma 2.4)). Let E be a reflex-
ive, strictly convex and smooth Banach space, let C be a
nonempty closed convex subset of E and let x ∈ E. Then

φ(y,�Cx) + φ(�Cx, x) ≤ φ(y, x), ∀y ∈ C.

Let E be a reflexive, strictly convex, smooth Banach
space and J is the duality mapping from E into E∗. Then
J−1 is also single value, one-to-one, surjective, and it is
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the duality mapping from E∗ into E. We make use of the
following mapping V studied in Alber (1996)

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉 + ‖x∗‖2, (2.1)

for all x ∈ E and x∗ ∈ E∗, that is, V (x, x∗) = φ(x, J−1(x∗)).
Lemma 2.7. (Alber (1996)). Let E be a reflexive, strictly
convex smooth Banach space and let V be as in (2.1). Then

V (x, x∗) + 2〈J−1(x∗) − x, y∗〉 ≤ V (x, x∗ + y∗),

for all x ∈ E and x∗, y∗ ∈ E∗.
Let A be an inverse-strongly monotone mapping of C

into E∗ which is said to be hemicontinuous if for all x, y ∈
C, themapping F of [0,1] into E∗, defined by F(t) = A(tx+
(1− t)y), is continuous with respect to the weak∗ topology
of E∗. We define byNC(v) the normal cone for C at a point
v ∈ C, that is,

NC(v) = {x∗ ∈ E∗ : 〈v − y, x∗〉 ≥ 0, ∀y ∈ C}. (2.2)

Lemma 2.8. (Rockafellar (1970)). Let C be a nonempty,
closed convex subset of a Banach space E and A is a mono-
tone, hemicontinuous operator of C into E∗. Let B ⊂ E×E∗
be an operator defined as follows:

Bv =
{
Av + NC(v), v ∈ C;
∅, otherwise. (2.3)

Then B is maximal monotone and B−10 = VI(A,C).
Lemma 2.9. (Chang et al. (2010)). Let E be a uniformly
convex Banach space, r > 0 be a positive number and
Br(0) be a closed ball of E. Then, for any given sequence
{xi}∞i=1 ⊂ Br(0) and for any given sequence {λi}∞i=1 of posi-
tive number with

∑∞
n=1 λn = 1, there exists a continuous,

strictly increasing, and convex function g :[ 0, 2r) →[ 0,∞)

with g(0) = 0 such that, for any positive integer i, j with
i < j,

‖
∞∑
n=1

λnxn‖2 ≤
∞∑
n=1

λn‖xn‖2 − λiλjg(‖xi − xj‖). (2.4)

Lemma 2.10. (Chang et al. (2010)). Let E be a real uni-
formly smooth and strictly convex Banach space, and C be
a nonempty closed convex subset of E. Let T : C → C be a
closed and quasi-φ-asymptotically nonexpansive mapping
with a sequence {kn} ⊂[ 1,∞), kn → 1. Then F(T) is a
closed convex subset of C.
For solving the equilibrium problem for a bifunction f :

C × C → R, let us assume that f satisfies the following
conditions:

(A1) f (x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e., f (x, y) + f (y, x) ≤ 0 for all

x, y ∈ C;
(A3) for each x, y, z ∈ C,

lim
t↓0 f (tz + (1 − t)x, y) ≤ f (x, y);

(A4) for each x ∈ C, y �→ f (x, y) is convex and lower
semi-continuous.

For example, let A be a continuous and monotone opera-
tor of C into E∗ and define

f (x, y) = 〈Ax, y− x〉, ∀x, y ∈ C.

Then, f satisfies (A1)-(A4). The following result is in Blum
and Oettli 1994.
Lemma 2.11. (Blum and Oettli (1994)). Let C be a closed
convex subset of a smooth, strictly convex and reflexive
Banach space E, let f be a bifunction from C×C toR satis-
fying (A1)-(A4), and let r > 0 and x ∈ E. Then, there exists
z ∈ C such that

f (z, y) + 1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C.

Lemma 2.12. (Takahashi and Zembayashi (2009)). Let C
be a closed convex subset of a uniformly smooth, strictly
convex and reflexive Banach space E and let f be a bifunc-
tion from C × C to R satisfying conditions (A1)-(A4). For
all r > 0 and x ∈ E, define a mapping Tf

r : E → C as
follows:

Tf
r x = {z ∈ C : f (z, y)+ 1

r
〈y−z, Jz−Jx〉 ≥ 0, ∀y ∈ C}.

Then the following hold:

(1) Tf
r is single-valued;

(2) Tf
r is a firmly nonexpansive-type mapping (Kohsaka

and Takahashi 2008), that is, for all x, y ∈ E,

〈Tf
r x−Tf

r y, JT
f
r x− JTf

r y〉 ≤ 〈Tf
r x−Tf

r y, Jx− Jy〉;
(3) F(Tf

r ) = EP(f );
(4) EP(f ) is closed and convex.

Lemma 2.13. (Takahashi and Zembayashi (2009)). Let C
be a closed convex subset of a smooth, strictly convex, and
reflexive Banach space E, let f be a bifunction from C × C
to R satisfying (A1)-(A4) and let r > 0. Then, for x ∈ E
and q ∈ F(Tf

r ),

φ(q,Tf
r x) + φ(Tf

r x, x) ≤ φ(q, x).

Strong convergence theorems
In this section, we prove the new convergence theorems
for finding the set of solutions of system of equilibrium
problems, the common fixed point set of a family of closed
and uniformly quasi-φ-asymptotically nonexpansive map-
pings, and the solution set of variational inequalities for
an α-inverse strongly monotonemapping in a 2-uniformly
convex and uniformly smooth Banach space.

Theorem 3.1. Let C be a nonempty closed and convex sub-
set of a 2-uniformly convex and uniformly smooth Banach
space E. For each j = 1, 2, ...,m let fj be a bifunction from
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C × C to R which satisfies conditions (A1)-(A4). Let A be
an α-inverse-strongly monotone mapping of C into E∗ sat-
isfying ‖Ay‖ ≤ ‖Ay − Au‖, ∀y ∈ C and u ∈ VI(A,C) �=
∅. Let {Si}∞i=1 : C → C be an infinite family of closed
uniformly Li-Lipschitz continuous and uniformly quasi-
φ-asymptotically nonexpansive mappings with a sequence
{kn} ⊂[ 1,∞), kn → 1 such that F := (∩∞

i=1F(Si)) ∩
(∩m

j=1EP(fj))(∩VI(A,C)) is a nonempty and bounded sub-
set in C. For an initial point x0 ∈ E with x1 = �C1x0 and
C1 = C, define the sequence {xn} as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vn=�CJ−1(Jxn − λnAxn),
zn= J−1(αn,0Jxn + ∑∞

i=1 αn,iJSni vn),
yn= J−1(βnJxn + (1 − βn)Jzn),
un=Tfm

rm,nT
fm−1
rm−1,n ...T

f2
r2,nT

f1
r1,nyn,

Cn+1={z ∈ Cn : φ(z, un)≤ φ(z, zn)≤ φ(z, xn)+θn},
xn+1=�Cn+1x0, ∀n ≥ 1,

(3.1)

where J is the duality mapping on E, θn = supq∈F (kn −
1)φ(q, xn), for each i ≥ 0, {αn,i} and {βn} are sequences
in [ 0, 1], {rj,n} ⊂[ d,∞) for some d > 0 and {λn} ⊂[ a, b]
for some a, b with 0 < a < b < c2α/2, where 1

c is
the 2-uniformly convexity constant of E. If

∑∞
i=0 αn,i =

1 for all n ≥ 0, lim infn→∞ βn(1 − βn) > 0 and
lim infn→∞ αn,0αn,i > 0 for all i ≥ 1, then {xn} converges
strongly to p ∈ F, where p = �Fx0.

Proof. We first show that Cn+1 is closed and convex for
each n ≥ 0. Clearly C1 = C is closed and convex. Suppose
that Cn is closed and convex for each n ∈ N. Since for any
z ∈ Cn, we known that

φ(z, un) ≤ φ(z, xn) + θn

is equivalent to

2〈z, Jxn − Jun〉 ≤ ‖xn‖2 − ‖un‖2 + θn.

Hence, Cn+1 is closed and convex.
Next, we show that F ⊂ Cn for all n ≥ 0. Since by

the convexity of ‖ · ‖2, property of φ, Lemma 2.9 and by
uniformly quasi-φ-asymptotically nonexpansive of Sn for
each q ∈ F ⊂ Cn, we have

φ(q, un) = φ(q,Tfm
rm,nT

fm−1
rm−1,n ...T

f2
r2,nT

f1
r1,nyn)

≤ φ(q, yn)

= φ(q, J−1(βnJxn + (1 − βn)Jzn)

= ‖q‖2 − 2〈q, βnJxn + (1 − βn)Jzn〉
+ ‖βnJxn + (1 − βn)Jzn‖2

≤ ‖q‖2 − 2βn〈q, Jxn〉 − 2(1 − βn)〈q, Jzn〉
+ βn‖xn‖2 + (1 − βn)‖zn‖2

= βnφ(q, xn) + (1 − βn)φ(q, zn), (3.2)

and

φ(q, zn) = φ(q, J−1(αn,0Jxn + ∑∞
i=1 αn,iJSni vn))

= ‖q‖2−2〈q, αn,0Jxn + ∑∞
i=1 αn,iJSni vn〉

+‖αn,0Jxn + ∑∞
i=1 αn,iJSni vn‖2

= ‖q‖2−2αn,0〈q, Jxn〉 − 2
∑∞

i=1 αn,i〈q, JSni vn〉
+‖αn,0Jxn + ∑∞

i=1 αn,iJSni vn‖2

≤ ‖q‖2−2αn,0〈q, Jxn〉 − 2
∑∞

i=1 αn,i〈q, JSni vn〉
+αn,0‖Jxn‖2 + ∑∞

i=1 αn,i‖JSni vn‖2

−αn,0αn,jg‖Jvn − JSnj vn‖
= ‖q‖2−2αn,0〈q, Jxn〉 + αn,0‖Jxn‖2

−2
∑∞

i=1 αn,i〈q, JSni vn〉
+∑∞

i=1 αn,i‖JSni vn‖2

−αn,0αn,jg‖Jvn − JSnj vn‖
= αn,0φ(q, xn) + ∑∞

i=1 αn,iφ(q, Sni vn)

−αn,0αn,jg‖Jvn − JSnj vn‖
≤ αn,0φ(q, xn) + ∑∞

i=1 αn,iknφ(q, vn)

−αn,0αn,jg‖Jvn − JSnj vn‖.
(3.3)

It follows from Lemma 2.7, that

φ(q, vn) = φ(q,�CJ−1(Jxn − λnAxn))

≤ φ(q, J−1(Jxn − λnAxn))

= V (q, Jxn − λnAxn)

≤ V (q, (Jxn − λnAxn) + λnAxn)

−2〈J−1(Jxn − λnAxn) − q, λnAxn〉
= V (q, Jxn)−2λn〈J−1(Jxn−λnAxn)− q,Axn〉
= φ(q, xn) − 2λn〈xn − q,Axn〉

+2〈J−1(Jxn − λnAxn) − xn,−λnAxn〉.
(3.4)

Since q ∈ VI(A,C) and A is an α-inverse-strongly mono-
tone mapping, we have

−2λn〈xn − q,Axn〉 = −2λn〈xn − q,Axn − Aq〉
−2λn〈xn − q,Aq〉

≤ −2λn〈xn − q,Axn − Aq〉
≤ −2αλn‖Axn − Aq‖2.

(3.5)
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By Lemma 2.2 and ‖Axn‖ ≤ ‖Axn − Aq‖, ∀q ∈ VI(A,C),
we also have

2〈J−1(Jxn − λnAxn) − xn,−λnAxn〉
= 2〈J−1(Jxn − λnAxn) − J−1(Jxn),−λnAxn〉
≤ 2‖J−1(Jxn − λnAxn) − J−1(Jxn)‖‖λnAxn‖
≤ 4

c2 ‖JJ−1(Jxn − λnAxn) − JJ−1(Jxn)‖‖λnAxn‖
= 4

c2 ‖Jxn − λnAxn − Jxn‖‖λnAxn‖
= 4

c2 ‖λnAxn‖2
= 4

c2 λ
2
n‖Axn‖2

≤ 4
c2 λ

2
n‖Axn − Aq‖2.

(3.6)

Substituting (3.5) and (3.6) into (3.4), we have

φ(q, vn) ≤ φ(q, xn) − 2αλn‖Axn − Aq‖2
+ 4

c2 λ2n‖Axn − Aq‖2
= φ(q, xn) + 2λn( 2

c2 λn − α)‖Axn − Aq‖2
≤ φ(q, xn).

(3.7)

Substituting (3.7) into (3.3), we also have

φ(q, zn) ≤ αn,0φ(q, xn) + ∑∞
i=1 αn,iknφ(q, xn)

−αn,0αn,jg‖Jvn − JSnj vn‖
≤ αn,0knφ(q, xn) + ∑∞

i=1 αn,iknφ(q, xn)
−αn,0αn,jg‖Jvn − JSnj vn‖

= knφ(q, xn) − αn,0αn,jg‖Jvn − JSnj vn‖
≤ φ(q, xn) + supq∈F (kn − 1)φ(q, xn)

−αn,0αn,jg‖Jvn − JSnj vn‖
= φ(q, xn) + θn − αn,0αn,jg‖Jvn − JSnj vn‖
≤ φ(q, xn) + θn

(3.8)

and substituting (3.8) into (3.2), we obtain

φ(q, un) ≤ φ(q, xn) + θn. (3.9)

Thus, this show that q ∈ Cn+1 implies that F ⊂ Cn+1
and hence, F ⊂ Cn for all n ≥ 0. This implies that the
sequence {xn} is well defined. From definition of Cn+1 that
xn = �Cnx0 and xn+1 = �Cn+1x0,∈ Cn+1 ⊂ Cn we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 0. (3.10)

Form Lemma 2.6, it follows that
φ(xn, x0) = φ(�Cnx0, x0)

≤ φ(q, x0) − φ(q, xn)
≤ φ(q, x0), ∀q ∈ F .

(3.11)

By (3.10) and (3.11), then {φ(xn, x0)} are nondecreasing
and bounded. So, we obtain that lim

n→∞ φ(xn, x0) exists.

In particular, by (1.5), the sequence {(‖xn‖ − ‖x0‖)2} is
bounded. This implies {xn} is also bounded. We denote

M := sup
n≥0

{‖xn‖} < ∞. (3.12)

Moreover, by the definition of θn and (3.12), it follows that

θn → 0 as n → ∞. (3.13)
Next, we show that {xn} is a Cauchy sequence inC. Since

xm = �Cmx0 ∈ Cm ⊂ Cn, for m > n, by Lemma 2.6, we
have

φ(xm, xn) = φ(xm,�Cnx0)
≤ φ(xm, x0) − φ(�Cnx0, x0)
= φ(xm, x0) − φ(xn, x0).

Since limn→∞ φ(xn, x0) exists and we taking m, n → ∞
then, we get φ(xm, xn) → 0. From Lemma 2.4, we have
limn→∞ ‖xm − xn‖ = 0. Thus {xn} is a Cauchy sequence
and by the completeness of E and there exist a point p ∈ C
such that

xn → p as n → ∞. (3.14)

Now, we claim that ‖Jun − Jxn‖ → 0, as n → ∞. By
definition of xn = �Cnx0, we have

φ(xn+1, xn) = φ(xn+1,�Cnx0)
≤ φ(xn+1, x0) − φ(�Cnx0, x0)
= φ(xn+1, x0) − φ(xn, x0).

Since lim
n→∞ φ(xn, x0) exists, we also have

lim
n→∞ φ(xn+1, xn) = 0. (3.15)

Again form Lemma 2.4, that

lim
n→∞ ‖xn+1 − xn‖ = 0. (3.16)

From J is uniformly norm-to-norm continuous on
bounded subsets of E, we obtain

lim
n→∞ ‖Jxn+1 − Jxn‖ = 0. (3.17)

Since xn+1 = �Cn+1x0 ∈ Cn+1 ⊂ Cn and the definition of
Cn+1, we have

φ(xn+1, un) ≤ φ(xn+1, xn) + θn.

By (3.13) and (3.15), that

lim
n→∞ φ(xn+1, un) = 0. (3.18)

Applying Lemma 2.4, we have

lim
n→∞ ‖xn+1 − un‖ = 0. (3.19)

Since
‖un − xn‖ = ‖un − xn+1 + xn+1 − xn‖

≤ ‖un − xn+1‖ + ‖xn+1 − xn‖.
It follows from (3.23) and (3.19), that

lim
n→∞ ‖un − xn‖ = 0. (3.20)
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Since J is uniformly norm-to-norm continuous on
bounded subsets of E, we also have

lim
n→∞ ‖Jun − Jxn‖ = 0. (3.21)

Next, we will show that xn → p ∈ F := ∩m
j=1EP(fj) ∩

(∩∞
i=1F(Si)) ∩ VI(A,C).
(i) We show that xn → p ∈ ∩∞

i=1F(Si). It follows from
definition of xn+1 = �Cn+1x0 ∈ Cn+1 ⊂ Cn, we have

φ(xn+1, zn) ≤ φ(xn+1, xn) + θn, ∀n ≥ 1.

By (3.13) and (3.15), that

lim
n→∞ φ(xn+1, zn) = 0. (3.22)

Form Lemma 2.4, that

lim
n→∞ ‖xn+1 − zn‖ = 0. (3.23)

Since J is uniformly norm-to-norm continuous, we obtain

lim
n→∞ ‖Jxn+1 − Jzn‖ = 0. (3.24)

From (3.45), we note that

‖Jxn+1 − Jzn‖ = ‖Jxn+1−(αn,0Jxn+∑∞
i=1 αn,iJSni vn)‖

= ‖αn,0Jxn+1−αn,0Jxn+∑∞
i=1 αn,iJxn+1

−∑∞
i=1 αn,iJSni vn‖

= ‖αn,0(Jxn+1 − Jxn)
+∑∞

i=1 αn,i(Jxn+1 − JSni vn)‖
= ‖ ∑∞

i=1 αn,i(Jxn+1 − JSni vn)
−αn,0(Jxn − Jxn+1)‖

≥ ∑∞
i=1 αn,i‖Jxn+1 − JSni vn‖

−αn,0‖Jxn − Jxn+1‖,
and hence

‖Jxn+1 − JSni vn‖ ≤ 1∑∞
i=1 αn,i

×(‖Jxn+1 − Jzn‖ + αn,0‖Jxn − Jxn+1‖).
(3.25)

From (3.17), (3.24) and lim inf
n→∞

∑∞
i=1 αn,i > 0, we get

lim
n→∞ ‖Jxn+1 − JSni vn‖ = 0. (3.26)

Since J−1 is uniformly norm-to-norm continuous on
bounded sets, we have

lim
n→∞ ‖xn+1 − Sni vn‖ = 0. (3.27)

Using the triangle inequality, that

‖xn − Sni vn‖ = ‖xn − xn+1 + xn+1 − Sni vn‖≤ ‖xn − xn+1‖ + ‖xn+1 − Sni vn‖.
From (3.23) and (3.27), we have

lim
n→∞ ‖xn − Sni vn‖ = 0. (3.28)

On the other hand, we observe that

φ(q, xn) − φ(q, un) + θn = ‖xn‖2 − ‖un‖2
−2〈q, Jxn − Jun〉 + θn.

It follows from θn → 0, ‖xn−un‖ → 0 and ‖Jxn−Jun‖ →
0, that

φ(q, xn) − φ(q, un) + θn → 0 as n → ∞. (3.29)

From (3.2), (3.3) and (3.7), we compute

φ(q, un) ≤ φ(q, yn)
≤ βnφ(q, xn) + (1 − βn)φ(q, zn)
≤ βnφ(q, xn) + (1 − βn)[ αn,0φ(q, xn)

+∑∞
i=1 αn,iknφ(q, vn)

−αn,0αn,jg‖Jvn − JSnj vn‖]
= βnφ(q, xn) + (1 − βn)αn,0φ(q, xn)

+(1 − βn)
∑∞

i=1 αn,iknφ(q, vn)
−(1 − βn)αn,0αn,jg‖Jvn − JSnj vn‖

≤ βnφ(q, xn) + (1 − βn)αn,0φ(q, xn)
+(1 − βn)

∑∞
i=1 αn,iknφ(q, vn)

≤ βnφ(q, xn) + (1 − βn)αn,0φ(q, xn)
+(1 − βn)

∑∞
i=1 αn,ikn[ φ(q, xn)

−2λn(α − 2
c2 λn)‖Axn − Aq‖2]

≤ βnφ(q, xn) + (1 − βn)αn,0knφ(q, xn)
+(1 − βn)

∑∞
i=1 αn,iknφ(q, xn)

−(1 − βn)
∑∞

i=1 αn,ikn2λn
×(α − 2

c2 λn)‖Axn − Aq‖2
= βnknφ(q, xn) + (1 − βn)knφ(q, xn)

−(1 − βn)
∑∞

i=1 αn,ikn2λn
×(α − 2

c2 λn)‖Axn − Aq‖2
≤ knφ(q, xn) − (1 − βn)

∑∞
i=1 αn,ikn2λn

×(α − 2
c2 λn)‖Axn − Aq‖2]

≤ φ(q, xn) + supq∈F (kn − 1)φ(q, xn)
−(1 − βn)

∑∞
i=1 αn,ikn2λn

×(α − 2
c2 λn)‖Axn − Aq‖2

≤ φ(q, xn) + θn − (1 − βn)
∑∞

i=1 αn,ikn2λn
×(α − 2

c2 λn)‖Axn − Aq‖2

and hence

2a(α− 2b
c2 )‖Axn − Aq‖2 ≤ 2λn(α− 2

c2 λn)‖Axn−Aq‖2
≤ 1

(1−βn)
∑∞

i=1 αn,ikn
(φ(q, xn)

−φ(q, un) + θn).
(3.30)
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From (3.29), {λn} ⊂[ a, b] for some a, b with 0 < a < b <

c2α/2, lim infn→∞(1 − βn) > 0 and lim infn→∞ αn,0αn,i >

0, for i ≥ 0 and kn → 1 as n → ∞, we obtain that
lim
n→∞ ‖Axn − Aq‖ = 0. (3.31)

From Lemma 2.6, Lemma 2.7 and (3.6), we compute

φ(xn, vn) = φ(xn,�CJ−1(Jxn − λnAxn))
≤ φ(xn, J−1(Jxn − λnAxn))
= V (xn, Jxn − λnAxn)
≤ V (xn, (Jxn − λnAxn) + λnAxn)

−2〈J−1(Jxn − λnAxn) − xn, λnAxn〉
= φ(xn, xn)+2〈J−1(Jxn−λnAxn)−xn,−λnAxn〉
= 2〈J−1(Jxn − λnAxn) − xn,−λnAxn〉
≤ 4λ2n

c2 ‖Axn − Aq‖2
≤ 4b2

c2 ‖Axn − Aq‖2.
Applying Lemma 2.4 and (3.31) that

lim
n→∞ ‖xn − vn‖ = 0 (3.32)

and we also obtain
lim
n→∞ ‖Jxn − Jvn‖ = 0. (3.33)

From Sni is continuous, for any i ≥ 1

lim
n→∞ ‖Sni xn − Sni vn‖ = 0. (3.34)

Again by the triangle inequality, we get

‖xn − Sni xn‖ ≤ ‖xn − Sni vn‖ + ‖Sni vn − Sni xn‖.
From (3.28) and (3.34), we have

lim
n→∞ ‖xn − Sni xn‖ = 0, ∀i ≥ 1. (3.35)

By using the triangle inequality, we have

‖p − Sni xn‖ ≤ ‖p − xn‖ + ‖xn − Sni xn‖.
That is

lim
n→∞ ‖p − Sni xn‖ = 0, ∀i ≥ 1. (3.36)

By the assumption that ∀i ≥ 1, Si is uniformly Li-Lipschitz
continuous, hence we have.

‖Sn+1
i xn − Sni xn‖ ≤ ‖Sn+1

i xn − Sn+1
i xn+1‖

+‖Sn+1
i xn+1 − p‖ + ‖p − Sni xn‖≤ (Li + 1)‖xn+1 − xn‖

+‖Sn+1
i xn+1 − p‖ + ‖p − Sni xn‖.

(3.37)

By (3.23) and (3.36), it follows that ‖Sn+1
i xn − Sni xn‖ → 0.

From Sni xn → p, we have Sn+1
i xn → p, that is SiSni xn → p.

In view of closeness of Si, we have Sip = p, for all i ≥ 1.
This imply that p ∈ ∩∞

i=1F(Si).
(ii) We show that xn → p ∈ ∩m

j=1EP(fj).
From Lemma 2.13 and un = �m

n yn, when �
j
n =

Tfj
rj,nT

fj−1
rj−1,n ...T

f2
r2,nT

f1
r1,n , j = 1, 2, 3, ...,m, �0

n = I, for q ∈ F ,
we observe that

φ(un,�
j
nyn) ≤ φ(q,�j

nyn) − φ(q, un)
≤ φ(q, xn) − φ(q, un) + θn
= ‖q‖2 − 2〈q, Jxn〉 + ‖xn‖2

−(‖q‖2 − 2〈q, Jun〉 + ‖un‖2) + θn
= ‖xn‖2 − ‖un‖2 − 2〈q, Jxn − Jun〉 + θn
≤ ‖xn − un‖(‖xn + un‖)

+2‖q‖‖Jxn − Jun‖ + θn.
(3.38)

From (3.20), (3.21), θn → 0 as n → ∞ and Lemma 2.4, we
get

lim
n→∞ ‖un − �

j
nyn‖ = 0, ∀j = 1, 2, 3, ...,m. (3.39)

By using triangle inequality, we have

‖xn − �
j
nyn‖ ≤ ‖xn − un‖ + ‖un − �

j
nyn‖.

From (3.20) and (3.39), we have

lim
n→∞ ‖xn − �

j
nyn‖ = 0, ∀j = 1, 2, 3, ...,m. (3.40)

Again by using triangle inequality, we have

‖�
j
nyn − �

j−1
n yn‖ ≤ ‖�

j
nyn − xn‖ + ‖xn − �

j−1
n yn‖.

From (3.40),we also have

lim
n→∞ ‖�

j
nyn − �

j−1
n yn‖ = 0, ∀j = 1, 2, 3, ...,m. (3.41)

Since J is uniformly norm-to-norm continuous, we obtain

lim
n→∞ ‖J�j

nyn − J�j−1
n yn‖ = 0, ∀j = 1, 2, 3, ...,m.

From rj,n > 0 we have ‖J�j
nyn−J�j−1

n yn‖
rj,n → 0 as n → ∞,

∀j = 1, 2, 3, ...,m, and

fj(�
j
nyn, y)+ 1

rj,n 〈y−�
j
nyn, J�

j
nyn−J�j−1

n yn〉≥0, ∀y ∈ C.

By (A2), that

‖y− �
j
nyn‖‖J�j

nyn−J�j−1
n yn‖

rn

≥ 1
rj,n 〈y − �

j
nyn, J�

j
nyn − J�j−1

n yn〉
≥ −fj(�

j
nyn, y)

≥ fj(y,�
j
nyn), ∀y ∈ C,

and �
j
nyn → p we get f (y, p) ≤ 0 for all y ∈ C. For 0 <

t < 1, define yt = ty+ (1 − t)p. Then yt ∈ C which imply
that fj(yt , p) ≤ 0. From (A1), we obtain that

0 = fj(yt , yt) ≤ tfj(yt , y) + (1 − t)fj(yt , p) ≤ tfj(yt , y).

Thus fj(yt , y) ≥ 0. From (A3), we have fj(p, y) ≥ 0 for
all y ∈ C and j = 1, 2, 3, ...,m. Hence p ∈ EP(fj), ∀j =
1, 2, 3, ...,m. This imply that p ∈ ∩m

j=1EP(fj).
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(iii) We show that xn → p ∈ VI(A,C). Indeed, define
B ⊂ E × E∗ by

Bv =
{
Av + NC(v), v ∈ C;
∅, v /∈ C. (3.42)

By Lemma 2.8, B is maximal monotone and B−10 =
VI(A,C). Let (v,w) ∈ G(B). Since w ∈ Bv = Av + NC(v),
we get w − Av ∈ NC(v). From vn ∈ C, we have

〈v − vn,w − Av〉 ≥ 0. (3.43)

On the other hand, since vn = �CJ−1(Jxn −λnAxn). Then
by Lemma 2.5, we have

〈v − vn, Jvn − (Jxn − λnAxn)〉 ≥ 0,

and thus

〈v − vn, Jxn−Jvn
λn

− Axn〉 ≤ 0. (3.44)

It follows from (3.43), (3.44) and A is monotone and 1
α
-

Lipschitz continuous, that

〈v − vn,w〉 ≥ 〈v − vn,Av〉
≥ 〈v − vn,Av〉 + 〈v − vn, Jxn−Jvn

λn
− Axn〉

= 〈v − vn,Av − Axn〉 + 〈v − zvn, Jxn−Jvn
λn

〉
= 〈v − vn,Av − Avn〉+〈v−vn,Avn−Axn〉

+〈v − vn, Jxn−Jvn
λn

〉
≥ −‖v − vn‖‖vn−xn‖

α
− ‖v − vn‖‖Jxn−Jvn‖

a
≥ −H(

‖vn−xn‖
α

+ ‖Jxn−Jvn‖
a ),

where H = supn≥1 ‖v − vn‖. Take the limit as n →
∞, (3.32) and (3.33), we obtain 〈v − p,w〉 ≥ 0. By the
maximality of B we have p ∈ B−10, that is p ∈ VI(A,C).
Finally, we show that p = �Fx0. From xn = �Cnx0, we

have 〈Jx0 − Jxn, xn − z〉 ≥ 0, ∀z ∈ Cn. Since F ⊂ Cn, we
also have

〈Jx0 − Jxn, xn − y〉 ≥ 0, ∀y ∈ F .

Taking limit n → ∞, we obtain

〈Jx0 − Jp, p − y〉 ≥ 0, ∀y ∈ F .

By Lemma 2.5, we can conclude that p = �Fx0 and xn →
p as n → ∞. This completes the proof.

If Si = S for each i ∈ N, then Theorem 3.1 is reduced to
the following Corollary.

Corollary 3.2. Let C be a nonempty closed and con-
vex subset of a 2-uniformly convex and uniformly smooth
Banach space E. For each j = 1, 2, ...,m let fj be a
bifunction from C × C to R which satisfies conditions
(A1)-(A4). Let A be an α-inverse-strongly monotone map-
ping of C into E∗ satisfying ‖Ay‖ ≤ ‖Ay − Au‖, ∀y ∈ C
and u ∈ VI(A,C) �= ∅. Let S : C → C be a closed L-
Lipschitz continuous and quasi-φ-asymptotically nonex-
pansive mappings with a sequence {kn} ⊂ [ 1,∞), kn → 1

such that F := (F(S)) ∩ (∩m
j=1EP(fj)) ∩ (VI(A,C)) is a

nonempty and bounded subset in C. For an initial point
x0 ∈ E with x1 = �C1x0 and C1 = C, we define the
sequence {xn} as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vn = �CJ−1(Jxn − λnAxn),
zn = J−1(αnJxn + (1 − αn)JSnvn),
yn = J−1(βnJxn + (1 − βn)Jzn),

un = Tfm
rm,nT

fm−1
rm−1,n ...T

f2
r2,nT

f1
r1,nyn,

Cn+1={z ∈ Cn : φ(z, un)≤φ(z, zn)≤φ(z, xn)+θn},
xn+1 = �Cn+1x0, ∀n ≥ 1,

(3.45)

where J is the duality mapping on E, θn = supq∈F (kn −
1)φ(q, xn), {αn}, {βn} are sequences in [ 0, 1], {rj,n} ⊂[ d,∞)

for some d > 0 and {λn} ⊂[ a, b] for some a, b with 0 < a <

b < c2α/2, where 1
c is the 2-uniformly convexity constant

of E. If lim infn→∞(1 − βn) > 0 and lim infn→∞ αn(1 −
αn) > 0, then {xn} converges strongly to p ∈ F, where p =
�Fx0.
For a special case that i = 1, 2, we can obtain the

following results on a pair of quasi-φ-asymptotically non-
expansive mappings immediately from Theorem 3.1.

Corollary 3.3. Let C be a nonempty closed and con-
vex subset of a 2-uniformly convex and uniformly smooth
Banach space E. For each j = 1, 2, ...,m let fj be a bifunc-
tion from C × C to R which satisfies conditions (A1)-
(A4). Let A be an α-inverse-strongly monotone mapping
of C into E∗ satisfying ‖Ay‖ ≤ ‖Ay − Au‖, ∀y ∈ C and
u ∈ VI(A,C) �= ∅. Let S,T : C → C be two closed quasi-
φ-asymptotically nonexpansive mappings and LS, LT-
Lipschitz continuous, respectively with a sequence {kn} ⊂
[ 1,∞), kn → 1 such that F := F(S)∩F(T)∩(∩m

j=1EP(fj))∩
VI(A,C) is a nonempty and bounded subset in C. For an
initial point x0 ∈ E with x1 = �C1x0 and C1 = C, we
define the sequence {xn} as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vn = �CJ−1(Jxn − λnAxn),
zn = J−1(αnJxn + βnJSnvn + γnJTnvn),
yn = J−1(δnJxn + (1 − δn)Jzn),

un = Tfm
rm,nT

fm−1
rm−1,n ...T

f2
r2,nT

f1
r1,nyn,

Cn+1={z ∈ Cn : φ(z, un)≤φ(z, zn)≤φ(z, xn)+θn},
xn+1 = �Cn+1x0, ∀n ≥ 0,

(3.46)

where J is the duality mapping on E, θn = supq∈F (kn −
1)φ(q, xn), {αn}, {βn}, {γn} and {δn} are sequences in [ 0, 1],
{rj,n} ⊂[ d,∞) for some d > 0 and {λn} ⊂[ a, b] for some
a, b with 0 < a < b < c2α/2, where 1

c is the 2-uniformly
convexity constant of E. If αn + βn + γn = 1 for all
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n ≥ 0 and lim infn→∞ αnβn > 0, lim infn→∞ αnγn > 0,
lim infn→∞ βnγn > 0 and lim infn→∞ δn(1− δn) > 0, then
{xn} converges strongly to p ∈ F, where p = �Fx0.

Corollary 3.4. Let C be a nonempty closed and con-
vex subset of a 2-uniformly convex and uniformly smooth
Banach space E. For each j = 1, 2, ...,m let fj be a bifunc-
tion from C × C to R which satisfies conditions (A1)-(A4).
Let A be an α-inverse-strongly monotone mapping of C
into E∗ satisfying ‖Ay‖ ≤ ‖Ay − Au‖, ∀y ∈ C and
u ∈ VI(A,C) �= ∅. Let {Si}∞i=1 : C → C be an infinite
family of closed quasi-φ- nonexpansive mappings such that
F := ∩∞

i=1F(Si) ∩ (∩m
j=1EP(fj)) ∩ VI(A,C) �= ∅. For an ini-

tial point x0 ∈ E with x1 = �C1x0 and C1 = C, we define
the sequence {xn} as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vn = �CJ−1(Jxn − λnAxn),
zn = J−1(αn,0Jxn + ∑∞

i=1 αn,iJSivn),
yn = J−1(βnJxn + (1 − βn)Jzn),

un = Tfm
rm,nT

fm−1
rm−1,n ...T

f2
r2,nT

f1
r1,nyn,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, zn) ≤ φ(z, xn),
xn+1 = �Cn+1x0, ∀n ≥ 0,

(3.47)

where J is the duality mapping on E, {αn,i} and {βn} are
sequences in [ 0, 1], {rj,n} ⊂[ d,∞) for some d > 0 and
{λn} ⊂[ a, b] for some a, b with 0 < a < b < c2α/2,
where 1

c is the 2-uniformly convexity constant of E. If∑∞
i=0 αn,i = 1 for all n ≥ 0, lim infn→∞(1 − βn) > 0 and

lim infn→∞ αn,0αn,i > 0 for all i ≥ 1, then {xn} converges
strongly to p ∈ F, where p = �Fx0.

Proof. Since {Si}∞i=1 : C → C is an infinite family of
closed quasi-φ-nonexpansive mappings, it is an infinite
family of closed and uniformly quasi-φ-asymptotically
nonexpansive mappings with sequence kn = 1. Hence the
conditions appearing in Theorem 3.1 F is a bounded sub-
set in C and for each i ≥ 1, Si is uniformly Li-Lipschitz
continuous are of no use here. By virtue of the closeness
of mapping Si for each i ≥ 1, it yields that p ∈ F(Si) for
each i ≥ 1, that is, p ∈ ∩∞

i=1F(Si). Therefore all conditions
in Theorem 3.1 are satisfied. The conclusion of Corollary
3.4 is obtained from Theorem 3.1 immediately.

Corollary 3.5. (Zegeye 2010, Theorem 3.2) Let C be a
nonempty closed and convex subset of a 2-uniformly con-
vex and uniformly smooth Banach space E. Let f be a
bifunction from C × C to R satisfying (A1)-(A4). Let A be
an α-inverse-strongly monotone mapping of C into E∗ sat-
isfying ‖Ay‖ ≤ ‖Ay − Au‖, ∀y ∈ C and u ∈ VI(A,C) �=
∅. Let {Si}Ni=1 : C → C be a finite family of closed quasi-φ-
nonexpansive mappings such that F := ∩N

i=1F(Si)∩EP(f )∩

VI(A,C) �= ∅. For an initial point x0 ∈ E with x1 = �C1x0
and C1 = C, we define the sequence {xn} as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

zn = �CJ−1(Jxn − λnAxn),

yn = J−1(α0Jxn + ∑N
i=1 αiJSizn),

f (un, y) + 1
rn 〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, yn) ≤ φ(z, xn),
xn+1 = �Cn+1x0, ∀n ≥ 0,

(3.48)

where J is the duality mapping on E, {αn,i} is sequence in
[ 0, 1], {rn} ⊂[ d,∞) for some d > 0 and {λn} ⊂[ a, b] for
some a, b with 0 < a < b < c2α/2, where 1

c is the 2-
uniformly convexity constant of E. If αi ∈ (0, 1) such that∑N

i=0 αi = 1, then {xn} converges strongly to p ∈ F, where
p = �Fx0.

Corollary 3.6. Let C be a nonempty closed and con-
vex subset of a uniformly convex and uniformly smooth
Banach space E. Let f be a bifunction from C × C to R

satisfying (A1)-(A4). Let {Si}∞i=1 : C → C be an infi-
nite family of closed and uniformly quasi-φ-asymptotically
nonexpansive mappings with a sequence {kn} ⊂[ 1,∞),
kn → 1 and uniformly Li-Lipschitz continuous such that
F := ∩∞

i=1F(Si) ∩ EP(f ) is a nonempty and bounded sub-
set in C. For an initial point x0 ∈ E with x1 = �C1x0 and
C1 = C, we define the sequence {xn} as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yn = J−1(αn,0Jxn + ∑∞
i=1 αn,iJSni xn),

f (un, y) + 1
rn 〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1={z ∈ Cn : φ(z, un)≤φ(z, yn)≤ φ(z, xn)+θn},
xn+1 = �Cn+1x0, ∀n ≥ 0,

(3.49)

where J is the duality mapping on E, θn = supq∈F (kn −
1)φ(q, xn), {αn,i} is sequence in [ 0, 1], {rn} ⊂[ a,∞) for
some a > 0. If

∑∞
i=0 αn,i = 1 for all n ≥ 0 and

lim infn→∞ αn,0αn,i > 0 for all i ≥ 1, then {xn} converges
strongly to p ∈ F, where p = �Fx0.

Deduced to Hilbert spaces
If E = H , a Hilbert space, then E is 2-uniformly con-
vex (we can choose c = 1) and uniformly smooth real
Banach space and closed relatively quasi-nonexpansive
map reduces to closed quasi-nonexpansive map. More-
over, J = I, identity operator on H and �C = PC ,
projection mapping from H into C. Thus, the following
corollaries hold.

Theorem 4.1. Let C be a nonempty closed and convex sub-
set of a Hilbert space H. For each j = 1, 2, ...,m let fj be
a bifunction from C × C to R which satisfies conditions
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(A1)-(A4). Let A be an α-inverse-strongly monotone map-
ping of C into H satisfying ‖Ay‖ ≤ ‖Ay − Au‖, ∀y ∈ C
and u ∈ VI(A,C) �= ∅. Let {Si}∞i=1 : C → C be an infi-
nite family of closed and uniformly quasi-φ-asymptotically
nonexpansive mappings with a sequence {kn} ⊂[ 1,∞),
kn → 1 and uniformly Li-Lipschitz continuous such that
F := ∩∞

i=1F(Si) ∩ (∩m
j=1EP(fj)) ∩ VI(A,C) is a nonempty

and bounded subset in C. For an initial point x0 ∈ H
with x1 = PC1x0 and C1 = C, define the sequence {xn} as
follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

zn = PC(xn − λnAxn),
yn = αn,0xn + ∑∞

i=1 αn,iSni zn,

un = Tfm
rm,nT

fm−1
rm−1,n ...T

f2
r2,nT

f1
r1,nyn,

Cn+1={z∈Cn :‖z − un‖≤‖z − yn‖≤‖z − xn‖+θn},
xn+1 = PCn+1x0, ∀n ≥ 0,

(4.1)

where θn = supq∈F (kn − 1)‖q − xn‖, {αn,i} is sequence in
[ 0, 1], {rj,n} ⊂[ a,∞) for some a > 0 and {λn} ⊂[ a, b] for
some a, b with 0 < a < b < α/2. If

∑∞
i=0 αn,i = 1 for all

n ≥ 0 and lim infn→∞ αn,0αn,i > 0 for all i ≥ 1, then {xn}
converges strongly to p ∈ F, where p = �Fx0.

Remark 4.2. Theorem 4.1 improve and extend the Corol-
lary 3.7 in Zegeye (2010) in the aspect for the map-
pings, we extend the mappings from a finite family of
closed relatively quasi-nonexpansive mappings to more
general an infinite family of closed and uniformly quasi-φ-
asymptotically nonexpansive mappings.

Zero points of an inverse-stronglymonotone
operator
Next, we consider the problemof finding a zero point of an
inverse-strongly monotone operator of E into E∗. Assume
that A satisfies the conditions:

(C1) A is α-inverse-strongly monotone,
(C2) A−10 = {u ∈ E : Au = 0} �= ∅.
Theorem 5.1. Let C be a nonempty closed and convex sub-
set of a 2-uniformly convex and uniformly smooth Banach
space E. For each j = 1, 2, ...,m let fj be a bifunction
from C × C to R which satisfies conditions (A1)-(A4). Let
A be an operator of E into E∗ satisfying (C1) and (C2).
Let {Si}∞i=1 : C → C be an infinite family of closed
uniformly Li-Lipschitz continuous and uniformly quasi-
φ-asymptotically nonexpansive mappings with a sequence
{kn} ⊂[ 1,∞), kn → 1 such that

F := ∩∞
i=1F(Si) ∩ (∩m

j=1EP(fj)) ∩ A−10

is a nonempty and bounded subset in C. For an initial point
x0 ∈ E with x1 = �C1x0 and C1 = C, define the sequence
{xn} as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

zn = J−1(αn,0Jxn + ∑∞
i=1 αn,iJSni vn),

yn = J−1(βnJxn + (1 − βn)Jzn),

un = Tfm
rm,nT

fm−1
rm−1,n ...T

f2
r2,nT

f1
r1,nyn,

Cn+1={z ∈ Cn : φ(z, un)≤φ(z, zn)≤φ(z, xn)+θn},
xn+1 = �Cn+1x0, ∀n ≥ 0,

(5.1)

where J is the duality mapping on E, θn = supq∈F (kn −
1)φ(q, xn), for each i ≥ 0, {αn,i} and {βn} are sequences
in [ 0, 1], {rj,n} ⊂[ d,∞) for some d > 0 and {λn} ⊂[ a, b]
for some a, b with 0 < a < b < c2α/2, where 1

c is the 2-
uniformly convexity constant of E. If

∑∞
i=0 αn,i = 1 for all

n ≥ 0, lim infn→∞(1 − βn) > 0 and lim infn→∞ αn,0αn,i >

0 for all i ≥ 1, then {xn} converges strongly to p ∈ F, where
p = �Fx0.

Proof. Setting C = E in Corollary 3.4, we also get �E = I.
We also have VI(A,C) = VI(A, E) = {x ∈ E : Ax = 0} �=
∅ and then the condition ‖Ay‖ ≤ ‖Ay − Au‖ holds for all
y ∈ E and u ∈ A−10. So, we obtain the result.

Complementarity problems
Let K be a nonempty, closed convex cone in E. We define
the polar K∗ of K as follows:

K∗ = {y∗ ∈ E∗ : 〈x, y∗〉 ≥ 0, ∀x ∈ K}. (6.1)

If A : K → E∗ is an operator, then an element u ∈ K

is called a solution of the complementarity problem
(Takahashi 2000) if

Au ∈ K∗, and 〈u,Au〉 = 0. (6.2)

The set of solutions of the complementarity problem is

denoted by CP(A,K).

Theorem 6.1. Let K be a nonempty closed and convex sub-
set of a 2-uniformly convex and uniformly smooth Banach
space E. For each j = 1, 2, ...,m let fj be a bifunction from
C × C to R which satisfies conditions (A1)-(A4). Let A be
an α-inverse-strongly monotone mapping of K into E∗ sat-
isfying ‖Ay‖ ≤ ‖Ay − Au‖, ∀y ∈ K and u ∈ CP(A,K) �=
∅. Let {Si}∞i=1 : K → K be an infinite family of closed
uniformly Li-Lipschitz continuous and uniformly quasi-
φ-asymptotically nonexpansive mappings with a sequence
{kn} ⊂[ 1,∞), kn → 1 such that F := ∩∞

i=1F(Si) ∩
(∩m

j=1EP(fj)) ∩ CP(A,K) is a nonempty and bounded sub-
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set in K . For an initial point x0 ∈ E with x1 = �K1x0 and
K1 = K, we define the sequence {xn} as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vn = �K J−1(Jxn − λnAxn),
zn = J−1(αn,0Jxn + ∑∞

i=1 αn,iJSni vn),
yn = J−1(βnJxn + (1 − βn)Jzn),

un = Tfm
rm,nT

fm−1
rm−1,n ...T

f2
r2,nT

f1
r1,nyn,

Kn+1={z ∈ Kn : φ(z, un)≤φ(z, zn)≤ φ(z, xn)+θn},
xn+1 = �Kn+1x0, ∀n ≥ 0,

(6.3)

where J is the duality mapping on E, θn = supq∈F (kn −
1)φ(q, xn), for each i ≥ 0, {αn,i} and {βn} are sequences
in [ 0, 1], {rj,n} ⊂[ d,∞) for some d > 0 and {λn} ⊂[ a, b]
for some a, b with 0 < a < b < c2α/2, where 1

c is the 2-
uniformly convexity constant of E. If

∑∞
i=0 αn,i = 1 for all

n ≥ 0, lim infn→∞(1 − βn) > 0 and lim infn→∞ αn,0αn,i >

0 for all i ≥ 1, then {xn} converges strongly to p ∈ F, where
p = �Fx0.

Proof. As in the proof of Takahashi in (Takahashi 2000,
Lemma 7.11), we get that VI(A,K) = CP(A,K). So, we
obtain the result.
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